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Main result and overview

A theory can be represented by topological
structures, in particular certain groupoids
of its models.

Can we characterise which groupoids of
models contain enough information to
represent a theory?

Main Theorem (J.W.)
A groupoid of models represents a
geometric theory if and only if
(i) it is conservative,

(ii) and it eliminates parameters.

Overview
I. Recall the definition of the topos of

sheaves on a groupoid and the classi-
fying topos of a theory.

II. Review an example representing
groupoid.

III. Define elimination of parameters.

IV. Technically restate the main theorem,
and sketch its providence.

V. Identify further examples of represent-
ing groupoids.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Main result and overview

A theory can be represented by topological
structures, in particular certain groupoids
of its models.

Can we characterise which groupoids of
models contain enough information to
represent a theory?

Main Theorem (J.W.)
A groupoid of models represents a
geometric theory if and only if
(i) it is conservative,

(ii) and it eliminates parameters.

Overview
I. Recall the definition of the topos of

sheaves on a groupoid and the classi-
fying topos of a theory.

II. Review an example representing
groupoid.

III. Define elimination of parameters.

IV. Technically restate the main theorem,
and sketch its providence.

V. Identify further examples of represent-
ing groupoids.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Main result and overview

A theory can be represented by topological
structures, in particular certain groupoids
of its models.

Can we characterise which groupoids of
models contain enough information to
represent a theory?

Main Theorem (J.W.)
A groupoid of models represents a
geometric theory if and only if
(i) it is conservative,

(ii) and it eliminates parameters.

Overview
I. Recall the definition of the topos of

sheaves on a groupoid and the classi-
fying topos of a theory.

II. Review an example representing
groupoid.

III. Define elimination of parameters.

IV. Technically restate the main theorem,
and sketch its providence.

V. Identify further examples of represent-
ing groupoids.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Topological groupoids

Definition
A (small) groupoid X = (X1 ⇒ X0) consists of a diagram of sets

X1 ×X0 X1 X1 X0,
m

i

t

s
e

satisfying the ‘obvious’ equations.

A topological groupoid consists of topologies on X0 and X1 such that the above maps
are continuous.

We say that X is open if s (equivalently, t) is open.
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Equivariant sheaves on a groupoid
Given a groupoid X, a discrete
bundle on X consists of a map
q : Y → X0,

M M ′ . . . N
X0.

. . .

a

a′

...

a′′

b

...

b′

c

...

c ′

If X is endowed with topologies, we say that a
bundle is a sheaf if
(i) q : Y → X0 is a local homeomorphism,

(ii) and β : Y ×X0 X1 → X1 is continuous.

A morphism of sheaves is a continuous map
f : Y → Y ′ such that the following commute:

Y ×X0 X1 Y ′ ×X0 X1

Y Y ′,

β

f ×X0 idX1

β′

f

Y Y ′

X0.

f

q q′

Definition – topos of equivariant sheaves
The category of sheaves and their morphisms define
a topos Sh(X).
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Classifying topos
If a topos is ‘like’ a generalised space, then a classifying topos is ‘like’ a space whose
points are models.

For a theory T, the classifying topos ET of T satisfies

T-Mod(Sets) ' Topos(Sets, ET).

This defines ET up to equivalence.
• Every geometric theory has a classifying topos;

• every topos is the classifying topos of some theory.

Definition
If X is a (open) topological groupoid for which

Sh(X) ' ET,

we say that X represents T.
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Indexed structures
Let T be a theory over a signature Σ whose set-based models are conservative.
We would expect the groupoid of all models to represent T.
This is not a small groupoid, but it suffices to consider a suitably large set of models.

Definition
Let M be a structure over a signature Σ.
Given a set K of parameters, a K-indexing of M consists of:
(i) a subset K′ ⊆ K,

(ii) and an expansion of M to the signature Σ ∪ { cm | m ∈ K′ } such that M satisfies

> `x
∨

m∈K
x = cm,

i.e. every n ∈ M is the interpretation of some parameter m ∈ K.

Equivalently, this is a choice of partial surjection K⇁⇁ M.
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The groupoid of all indexed models

Let Ind(K) denote the groupoid:
(i) whose objects are K-indexed models of T,

(ii) and whose arrows are all isomorphisms between these.

Theorem (Awodey–Forssell [1], [5])
Let K be infinite. For suitable topologies on Ind(K), there is an equivalence

Sh(Ind(K)) ' ET

if and only if the K-indexed models are conservative –

– if two formulae are interpreted identically, then they are T-provably equivalent.

This is just one example among many representing groupoids for T.
In the following sections, we develop our characterisation.
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Definable subsets of a single model

Let M be a model of T with an indexing K⇁⇁ M.

(i) A definable subset is a subset of the form

J x⃗ : φ KM = { n⃗ ⊆ M | M ⊨ φ(⃗n) } ⊆ Mn

for some formula { x⃗ : φ }.

(ii) A definable subset with parameters is a subset of the form

J x⃗ , m⃗ : ψ KM = { n⃗ ⊆ M | M ⊨ ψ(⃗n, m⃗) } ⊆ Mn

for some formula { x⃗ , y⃗ : ψ } and a tuple of parameters m⃗ ⊆ K.
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Definables for a groupoid of models

For a groupoid X of T-models, a K-indexing of X is a choice of K-indexing K⇁⇁ M for
each M ∈ X.

(i) A definable or definable without parameters is a subset of the form

J x⃗ : φ KX = { 〈⃗n,M〉 | n⃗ ⊆ M ∈ X0, M ⊨ φ(⃗n) } ⊆
⨿

M∈X0
Mn

for some formula { x⃗ : φ }.

(ii) A definable with parameters is a subset of the form

J x⃗ , m⃗ : ψ KX = { 〈⃗n,M〉 | n⃗, m⃗ ⊆ M ∈ X0, M ⊨ ψ(⃗n, m⃗) } ⊆
⨿

M∈X0
Mn

for some formula { x⃗ , y⃗ : ψ } and a tuple of parameters m⃗ ⊆ K.
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Interpreting definables and elimination of parameters

For each n, there is a bundle

M M ′ . . . N
X0.

. . .

a⃗

a⃗′

...

a⃗′′

Mn

b⃗

...

b⃗′

M ′n

c⃗

...

c⃗ ′

Nn
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Interpreting definables and elimination of parameters

Each definable defines a subset

M M ′ . . . N
X0.

. . .

a⃗

a⃗′

...

a⃗′′

Mn

b⃗

...

b⃗′

M ′n

c⃗

...

c⃗ ′

Nn

J x⃗ : φ KX
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Interpreting definables and elimination of parameters
Each definable defines a subset

M M ′ . . . N
X0.

. . .

a⃗

a⃗′

...

a⃗′′

Mn

b⃗

α(⃗a)

...

b⃗′

M ′n

c⃗

...

c⃗ ′

Nn

J x⃗ : φ KX

α

Note that J x⃗ : φ KX is stable under the
X1-action.
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Interpreting definables and elimination of parameters

Each definable with parameters also defines a
subset

M M ′ . . . N
X0.

. . .

a⃗

a⃗′

...

a⃗′′

Mn

b⃗

...

b⃗′

M ′n

c⃗

...

c⃗ ′

NnJ x⃗ , m⃗ : ψ KX
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Interpreting definables and elimination of parameters
Each definable with parameters also defines a
subset

M M ′ . . . N
X0.

. . .

a⃗

a⃗′

...

a⃗′′

Mn

b⃗

α(⃗a)

...

b⃗′

M ′n

c⃗

...

c⃗ ′

NnJ x⃗ , m⃗ : ψ KX

α

However, J x⃗ , m⃗ : ψ KX is not stable under the
X1-action.
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Interpreting definables and elimination of parameters

We can consider the closure of J x⃗ , m⃗ : ψ KX
under the X1-action

M M ′ . . . N
X0.

. . .

a⃗

γ(b⃗)

...

a⃗′′

Mn

b⃗

α(⃗a)

...

b⃗′

M ′n

c⃗

...

c⃗ ′

NnJ x⃗ , m⃗ : ψ KX
J x⃗ , m⃗ : ψ KX

α

γ
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α
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In this case, J x⃗ , m⃗ : ψ KX = J x⃗ : φ KX.
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α

γ

In this case, J x⃗ , m⃗ : ψ KX = J x⃗ : φ KX.

Main Definition
Given a groupoid X of T-models and an
indexing K⇁⇁ X,
X eliminates parameters if, for every ψ
and m⃗, there exists some geometric
formula φ such that

J x⃗ , m⃗ : ψ KX = J x⃗ : φ KX.

It suffices to check that there exists a
geometric formula χ such that

J y⃗ = m⃗ KX = J y⃗ : χ KX.
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Classification result

Main Theorem (J.W.)
Let T be a geometric theory and let X = (X1 ⇒ X0) be a small groupoid of T-models.

We can endow X with the structure of an open topological groupoid for which

Sh(X) ' ET

if and only if
(i) X0 is a conservative set –

J x⃗ : φ KX = J x⃗ : χ KX =⇒ φ ≡T
x⃗ χ,

(ii) there is an indexing of X by parameters K for which X eliminates parameters –

J x⃗ , m⃗ : ψ KX = J x⃗ : φ KX.
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Sketch: Suppose that, for a choice of topologies, Sh(X) ' ET,

(1) Under the equivalence Sh(X) ' ET, { x⃗ : >} ∈ ET
is identified with the sheaf

M M ′ . . . N
X0,

. . .

a⃗

...

a⃗′′

Mn

b⃗

...

b⃗′

M ′n

c⃗

...

c⃗ ′

Nn

a local homeomorphism.

(2) A subobject U ↣
⨿

M∈X0
Mn in

Sh(X) is a stable open subset.

In particular,

J x⃗ : φ KX and J x⃗ = m⃗ KX
both define subobjects.

(3) The map

SubET({ x⃗ : >}) → SubSh(X)

 ⨿
M∈X0

Mn

 ,

{ x⃗ : φ } 7→ J x⃗ : φ KX
(a) is injective if and only if X is

conservative,
(b) and surjective if and only if X

eliminates parameters.
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Sketch: Suppose that, for a choice of topologies, Sh(X) ' ET,
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Indexed and enumerated model groupoids

Proposition (cf. Awodey–Forssell [1],[5], Butz–Moerdijk [2])
(i) The groupoid of all K-indexed models eliminates parameters.

(ii) The groupoid of all K-enumerated –

every element is indexed by infinitely many parameters

– models eliminates parameters.

Indeed, for each tuple of parameters m⃗ ∈ K,

J x⃗ = m⃗ KX =

uv x⃗ :
∧

mi=mj

xi = xj

}~
X

.
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The theory of algebraic extensions
Definition
For a fixed field K , the theory T(−/K) of
algebraic extensions of K is the theory
(i) with the standard axioms of a field,

(ii) constant symbols and axioms interpret-
ing a copy of K inside any model,

(iii) and the axiom > `
∨

q∈K [x ] q(x) = 0.

Let Sub
(
K
)

denote the groupoid
of intermediate extensions

K ⊆ L ⊆ K
and all isomorphisms between
these.
We can index each L ⊆ K by the
elements of K .

Proposition
The indexed groupoid K ⇁⇁ Sub

(
K
)

eliminates parameters and is conservative, hence

ET(−/K)
' Sh

(
Sub

(
K
))
.

Indeed, for each tuple of parameters a⃗ ∈ K ,J x⃗ = a⃗ KSub(K) = J x⃗ : q1(x1) = 0 ∧ q2(x1, x2) = 0 ∧ · · · ∧ qn(x1, . . . , xn) KSub(K),

where qi(x1, . . . , xi) is the minimal polynomial of ai over K (a1, . . . , ai−1).
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Atomic theories

A theory (with enough points) is atomic if and only
if every (model-theoretic) type is isolated.
That is, for each n⃗ ∈ M, there is a formula χn⃗ such
that M ⊨ χn⃗(⃗n) and, for any other tuple n⃗′ ∈ M,

n⃗, n⃗′ satisfy the same formulae ⇐⇒ M ⊨ χn⃗(⃗n′).

A model M is ultrahomogeneous if
every partial isomorphism of finite
substructures of M extends to a
total automorphism

n⃗ m⃗

M M.

∼

∼

Proposition (cf. Caramello [3])
If M is a model of an atomic theory T, the automorphism group Aut(M) eliminates
parameters if and only if M is ultrahomogeneous.
Indeed, if M is ultrahomogeneous, for each m⃗ ∈ M,

J x⃗ = m⃗ KX = J x⃗ : χn⃗ KX.
Hence, ET ' BAut(M) if and only if M is a conservative and ultrahomogeneous model.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Atomic theories

A theory (with enough points) is atomic if and only
if every (model-theoretic) type is isolated.
That is, for each n⃗ ∈ M, there is a formula χn⃗ such
that M ⊨ χn⃗(⃗n) and, for any other tuple n⃗′ ∈ M,

n⃗, n⃗′ satisfy the same formulae ⇐⇒ M ⊨ χn⃗(⃗n′).

A model M is ultrahomogeneous if
every partial isomorphism of finite
substructures of M extends to a
total automorphism

n⃗ m⃗

M M.

∼

∼

Proposition (cf. Caramello [3])
If M is a model of an atomic theory T, the automorphism group Aut(M) eliminates
parameters if and only if M is ultrahomogeneous.
Indeed, if M is ultrahomogeneous, for each m⃗ ∈ M,

J x⃗ = m⃗ KX = J x⃗ : χn⃗ KX.
Hence, ET ' BAut(M) if and only if M is a conservative and ultrahomogeneous model.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Atomic theories

A theory (with enough points) is atomic if and only
if every (model-theoretic) type is isolated.
That is, for each n⃗ ∈ M, there is a formula χn⃗ such
that M ⊨ χn⃗(⃗n) and, for any other tuple n⃗′ ∈ M,

n⃗, n⃗′ satisfy the same formulae ⇐⇒ M ⊨ χn⃗(⃗n′).

A model M is ultrahomogeneous if
every partial isomorphism of finite
substructures of M extends to a
total automorphism

n⃗ m⃗

M M.

∼

∼

Proposition (cf. Caramello [3])
If M is a model of an atomic theory T, the automorphism group Aut(M) eliminates
parameters if and only if M is ultrahomogeneous.
Indeed, if M is ultrahomogeneous, for each m⃗ ∈ M,

J x⃗ = m⃗ KX = J x⃗ : χn⃗ KX.
Hence, ET ' BAut(M) if and only if M is a conservative and ultrahomogeneous model.



Overview I. Equivariant sheaves and classifying toposes II. Indexed models III. Elimination of parameters IV. Classification result V. Examples References

Dense linear orders without endpoints
The theory of dense linear orders without endpoints L∞, i.e. the theory

x < x `x ⊥ >, `x ,y x < y ∨ x = y ∨ y < x ,
x < y ∧ y < z `x ,y ,z x < z , x < z `x ,z ∃y x < y ∧ y < z ,

> `y ∃x x < y , > `y ∃z y < z ,
is an atomic theory. It is also complete, i.e. every model is conservative.

The rationals (Q, <) is an ultrahomogeneous model of L∞, hence EL∞ ' BAut(Q).

The model R+ R ∼= { 1, 2 } × R,

( )

R

+ ( )

R
is not an ultrahomogeneous model

Therefore, EL∞ 6' BAut(R+ R).
In contrast, the theory of Joyal–Tierney and Dubuc
[6], [4] demonstrates that

EL∞ ' BAut(R+ R)loc,

where Aut(R+ R)loc denotes the localic group of
automorphisms of R+ R.
This highlights the different flavour between the
localic and topological representation of toposes.
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Generic Dedekind cuts
What theory does BAut(R+ R) classify?

We note that, for all r ∈ R,J x = (1, r) KAut(R+R) = { 1 } × R and J x = (2, r) KAut(R+R) = { 2 } × R,
which aren’t definable without parameters.
We are therefore motivated to introduce two unary predicates U1,U2 with
interpretations J U1(x) KR+R = { 1 } × R and J U2(x) KR+R = { 2 } × R.
The group Aut(R+ R) eliminates parameters over this expanded signature.
Corollary
The topos BAut(R+ R) classifies the theory of R+ R over the expanded signature,
the theory of generic Dedekind cuts, which is the expansion of L∞ by the axioms

U1(x) ∧ U2(x) `x ⊥, x < y `x ,y U1(x) ∨ U2(y),
> ` ∃x U1(x), > ` ∃y U2(y),

U1(x) ∧ y < x `x ,y U1(y), U2(y) ∧ y < x `x ,y U2(y),
U1(x) `x ∃y U1(y) ∧ x < y , U2(y) `y ∃x U2(x) ∧ x < y .
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Thank you for listening
The preprint:

On topological groupoids that represent theories, arXiv:2306.16331
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