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Starring

The category of arrows Arr(A)

objects : arrows a : A→ A0 in the base category A
arrows : pairs of arrows (f , f0) : (A, a,A0)→ (B, b,B0) such that

A
f //

a

��

B

b

��
A0

f0

// B0

commutes
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Previous Season

(Quite a lot of years ago) The canonical embedding

U : A → Arr(A) , U(A) = (idA : A→ A)

1. adds freely a factorization system (Korostenski, Tholen)

2. under suitable assumptions on A, enters (in some disguised form)

into several other completion processes :

2.1 preregular completion

2.2 reflexive coequalizer completion

2.3 exact completion

2.4 homological completion

(Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky, . . . )
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In this Episode

(Danger : spoil !) If the category A has an initial object ∅, there is

another embedding

Γ: A → Arr(A) , Γ(A) = (∅A : ∅ → A)

For a given arrow a : A→ A0 in A, we get the diagram

∅ //

��

∅ //

��

A

a

��
A

a
// A0

id
// A0

What is this ? Nothing ! But we get also the diagram

∅ //

��

∅ //

��

A

a

��
A

a
//

id

77

A0
id
// A0

and this is the strong homotopy cokernel of Γ(a : A→ A0) in Arr(A)
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Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category B, we

need a structure Θ of nullhomotopies on B (Grandis) :

1. for every arrow B
g // C , a set Θ(g) of nullhomotopies on g

2. for composable arrows A
f // B

g // C
h // D , a map

f ◦ − ◦ h : Θ(g)→ Θ(f · g · h)

3. in such a way that, for every λ ∈ Θ(g),

3.1 (f ′ · f ) ◦ λ ◦ (g · g ′) = f ′ ◦ (f ◦ λ ◦ g) ◦ g ′

3.2 idB ◦ λ ◦ idC = λ

Notation for λ ∈ Θ(g) : B

g

''

0

77⇑ λ C

15



Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category B, we

need a structure Θ of nullhomotopies on B (Grandis) :

1. for every arrow B
g // C , a set Θ(g) of nullhomotopies on g

2. for composable arrows A
f // B

g // C
h // D , a map

f ◦ − ◦ h : Θ(g)→ Θ(f · g · h)

3. in such a way that, for every λ ∈ Θ(g),

3.1 (f ′ · f ) ◦ λ ◦ (g · g ′) = f ′ ◦ (f ◦ λ ◦ g) ◦ g ′

3.2 idB ◦ λ ◦ idC = λ

Notation for λ ∈ Θ(g) : B

g

''

0

77⇑ λ C

16



Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category B, we

need a structure Θ of nullhomotopies on B (Grandis) :

1. for every arrow B
g // C , a set Θ(g) of nullhomotopies on g

2. for composable arrows A
f // B

g // C
h // D , a map

f ◦ − ◦ h : Θ(g)→ Θ(f · g · h)

3. in such a way that, for every λ ∈ Θ(g),

3.1 (f ′ · f ) ◦ λ ◦ (g · g ′) = f ′ ◦ (f ◦ λ ◦ g) ◦ g ′

3.2 idB ◦ λ ◦ idC = λ

Notation for λ ∈ Θ(g) : B

g

''

0

77⇑ λ C

17



Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category B, we

need a structure Θ of nullhomotopies on B (Grandis) :

1. for every arrow B
g // C , a set Θ(g) of nullhomotopies on g

2. for composable arrows A
f // B

g // C
h // D , a map

f ◦ − ◦ h : Θ(g)→ Θ(f · g · h)

3. in such a way that, for every λ ∈ Θ(g),

3.1 (f ′ · f ) ◦ λ ◦ (g · g ′) = f ′ ◦ (f ◦ λ ◦ g) ◦ g ′

3.2 idB ◦ λ ◦ idC = λ

Notation for λ ∈ Θ(g) : B

g

''

0

77⇑ λ C

18



Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category B, we

need a structure Θ of nullhomotopies on B (Grandis) :

1. for every arrow B
g // C , a set Θ(g) of nullhomotopies on g

2. for composable arrows A
f // B

g // C
h // D , a map

f ◦ − ◦ h : Θ(g)→ Θ(f · g · h)

3. in such a way that, for every λ ∈ Θ(g),

3.1 (f ′ · f ) ◦ λ ◦ (g · g ′) = f ′ ◦ (f ◦ λ ◦ g) ◦ g ′

3.2 idB ◦ λ ◦ idC = λ

Notation for λ ∈ Θ(g) : B

g

''

0

77⇑ λ C

19



Nullhomotopies

Example : if A ⊆ B is a subcategory, we put

ΘA( B
g // C ) = {(g1 : B → A, g2 : A→ C ) | g1 · g2 = g and A ∈ A}

Example : in particular, if B has an initial object ∅, we put

Θ∅( B
g // C ) = {λ : B → ∅ | λ · ∅c = g}

Example : if B is a 2-category and Z an ideal of arrows in B, we put

ΘZ( B
g // C ) =

2-cells B

g

''

s

77⇑ λ C | s ∈ Z


Example : in particular, if B has a zero object 0 and Z is the ideal of

zero arrows, we write Θ0 instead of ΘZ . This example justifies the

general notation adopted for nullhomotopies.
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Nullhomotopies

Main example : if A is additive, then Arr(A) is a 2-category ; if A is

any category, what remains in Arr(A) is a structure of nullhomotopies :

Θ∆

(
(A, a,A0)

(f ,f0) // (B, b,B0)

)
= {λ : A0 → B | a·λ = f and λ·b = f0}

A
f //

a

��

B

b

��
A0

f0

//

λ

88

B0

Some more examples are discussed in Episode 2. They are related to :

• generalized (co)radicals and, in particular, (idempotent) (co)monads,

• prepointed categories and, in particular, multipointed categories,

• ideals of arrows seen as discrete structures of nullhomotopies.
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Θ-cokernels

In a category with nullhomotopies (B,Θ), the Θ-cokernel of an arrow

g : B → C is a triple C(g) ∈ B, cg : C → C(g), γg ∈ Θ(g · cg )

γg ⇓

C(g)

B

0
00

g // C

cg

==

such that, for any other triple D ∈ B, h : C → D, λ ∈ Θ(g · h)

there exists a unique arrow h′ : C(g)→ D such that

cg · h′ = h and γg ◦ h′ = λ
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Θ-cokernels

The Θ-cokernel of g : B → C is strong when, in the situation

B
g //

0

γg ⇑
77C

0

λ ⇓
''cg // C(g)

h // D

if γg ◦ h = g ◦ λ, then there exists a unique λ′ ∈ Θ(h) such that

cg ◦ λ′ = λ
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Θ-cokernels
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B
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0
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0
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''cg // C(g)

h //

0
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Θ-cokernels

A couple of egocentric motivations to study Θ-(co)kernels :

1. In Episode 1, with Jacqmin, Mantovani and Metere, we used

Θ-(co)kernels to give an internal unified version of the Gabriel-Ulmer

exact sequence associated with a functor of pointed groupoids and of

the Brown exact sequence associated with a fibration of groupoids.

2. In Episode 2, with Mantovani and Messora, we used Θ-(co)kernels

to define a general notion of homotopy torsion theory which includes

classical (abelian) torsion theories, torsion theories in multipointed

and in prepointed categories, and pretorsion theories.
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Θ-cokernels

An example from Episode 2 : given a pre-coradical

B

S
''

Id

77⇑ γ B

we get a nullohomotopy structure on B by

Θγ( B
g // C ) = {λ : S(B)→ C | γB · λ = g}

For every object B ∈ B, the following is the Θγ-cokernel of idB

S(B)

id

�'
B

γB
==

id
// B

γB
// S(B)

Moreover, if S is an idempotent monad and γ is its unit, then this

Θγ-cokernel is strong
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Θ-cokernels

Main example : if A has pushouts, the Θ∆-cokernel in Arr(A) of an

arrow (f , f0) : (A, a,A0)→ (B, b,B0) is a diagram of shape

A

a

��

f // B
b

��

g // C

c

��
A0

f0

//

λ

66

B0 g0

// C0

where the two following diagrams should commute

A
f //

a

��

B

g

��
A0

λ
// C

A0

λ

��

f0

''

Bg

ww

b

��
C

c
  

B0

g0~~
C0

So, just replace these diagrams with the corresponding colimits and we

get the strong Θ∆-cokernel

A
f //

a

��

B
b

��

a′ // A0 +a,f B

[f0,b]

��
A0

f ′

33

f0

// B0
id

// B0
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colimits and we get the strong Θ∆-cokernel of (f , f0) in Arr(A)

A
f //

a

��

B
b

��

a′ // A0 +a,f B

[f0,b]

��
A0

f ′

33

f0

// B0
id

// B0
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The heart of the story

Why, if A has finite colimits, the embedding

Γ: A → Arr(A) , Γ(A) = (∅A : ∅ → A)

is the completion of A under strong Θ-cokernels ?
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The heart of the story

First, the objects : we already observed that, for any object a : A→ A0

of Arr(A), the following is a strong Θ∆-cokernel

ΓA
Γa

//

0

idA ⇓ ((
ΓA0

(∅A,idA0

// (A, a,A0)
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The heart of the story

Second, the arrows : every arrow in Arr(A)

A
f //

a

��

B

b

��
A0

f0

// B0

is the unique extension to the Θ∆-cokernels

ΓA
Γf //

Γa

��
0

=⇒

""

0 idA

""

ΓB

Γb

��
0⇐=

||

0
idB

||

ΓA0
Γf0

//

(∅A,idA0
)

��

ΓB0

(∅B ,idB0
)

��
(A, a,A0)

(f ,f0)
// (B, b,B0)
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The heart of the story

Third, the nullhomotopies : every nullhomotopy in Arr(A)

A
f //

a

��

B

b

��
A0

f0

//

λ

>>

B0
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(∅A,idA0
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��

Γλ

55

ΓB0

(∅B ,idB0
)

��
(A, a,A0)

(f ,f0) //

0

⇑ λ
88

(B, b,B0)
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Two technical details

In order to state correctly the main result, we need two technical details.

First : in a category with nullhomotopies (B,Θ), the reduced

interchange (Grandis) is the following condition. In the situation

A

f

''

0

77⇑ α B

g

''

0

77⇑ β C

then α ◦ g = f ◦ β
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Two technical details

Main example : in (Arr(A),Θ∆), the reduced interchange is true

A

a

��

f // B

b

��

g // C

c

��
A0

f0

//

α

>>

B0 g0

//

β

>>

C0

α ◦ (g , g0) = α · g = α · b · β = f0 · β = (f , f0) ◦ β

55



Two technical details

Main example : in (Arr(A),Θ∆), the reduced interchange is true

A

a

��

f // B

b

��

g // C

c

��
A0

f0

//

α

>>

B0 g0

//

β

>>

C0

α ◦ (g , g0) = α · g = α · b · β = f0 · β = (f , f0) ◦ β

56



Two technical details

Example :

1. If B is a 2-category and Z is an ideal of arrows in B, the reduced

interchange in general is not true in (B,ΘZ). In fact, the reduced

interchange would imply that for every arrow s ∈ Z there exists a

unique 2-cell s ⇒ s.

2. Nevertheless, the reduced interchange is true if B has a 2-zero

object and Z is the ideal of zero arrows.
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Two technical details

In order to state correctly the main result, we need two technical details.

Second : Θ-strong colimits in a category with nullhomotopies (B,Θ).

1. An initial object ∅ is Θ-strong if, for every object B ∈ B, one has

Θ(∅B : ∅ → B) = {∗}
2. Consider the factorization through the pushout of f and g

A
g //

f

��

C

f ′

��

y

��

B
g ′

//

x 11

B +f ,g C
[x,y ]

((
D

The pushout is Θ-strong if, given α ∈ Θ(x) and β ∈ Θ(y) such that

f ◦ α = g ◦ β, there exists a unique [α, β] ∈ Θ([x , y ]) such that

g ′ ◦ [α, β] = α and f ′ ◦ [α, β] = β
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Two technical details

Main example : if A has finite colimits, then Arr(A) has finite colimits

and they are Θ∆-strong

Example : if B is a 2-category and we take, as ideal of arrows, Z = B,
then to be ΘZ -strong means to be a 2-colimit
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Two technical details

From Episode 2 : why Θ-strong colimits are useful ?

1. In (B,Θ), if B has strong Θ-cokernels of identity arrows and

Θ-strong pushouts, then it has all Θ-cokernels and they are strong.

2. In particular, given a prepointed category

A U // B
Coo

D
oo C a U a D U full and faithful

and the structure Θ on B induced by the unit of C a U or by the

counit of U a D, if B has pullbacks and pushouts, then they are

Θ-strong and B automatically has strong Θ-kernels and strong

Θ-cokernels.
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The main result

Main result : If A is a category with finite colimits, then the embedding

Γ: A −→ (Arr(A),Θ∆)

is universal among the functors F : A → (B,Θ) such that • Θ satisfies

the reduced interchange,

• B has strong Θ-cokernels and Θ-strong finite colimits,

• F preserves finite colimits

A Γ //

F
##

Arr(A)

F̂
��
B

This means that, for any F as above, there exists an essentially unique

morphism of categories with nullhomotopies F̂ : (Arr(A),Θ∆)→ (B,Θ)

which preserves Θ-cokernels and finite colimits and such that Γ · F̂ ' F
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Forthcoming Episode

In the forthcoming Episode 4, with Dupont we will show that, if A is an

abelian category, then the bicategory of fractions

Arr(A)[Σ−1]

is a 2-abelian bicategory.

Here Σ is a class of arrows obtained by intersection from two factorization

systems constructed in Arr(A) using Θ∆-kernels and Θ∆-cokernels.

See you in Palermo for PSSL 108 in September !
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