Completions, Season 2, Episode 3 : Completion under strong homotopy cokernels

Enrico M. Vitale, UCLouvain

June 16, 2023

ItaCa Fest

Table of contents

1. Starring
2. Previous Season
3. In this Episode
4. Nullhomotopies
5. Θ-cokernels
6. The heart of the story
7. Two technical details
8. The main result
9. Forthcoming Episode

Starring

Starring

The category of arrows $\operatorname{Arr}(\mathcal{A})$

Starring

The category of arrows $\operatorname{Arr}(\mathcal{A})$
objects: arrows a: $A \rightarrow A_{0}$ in the base category \mathcal{A}

Starring

The category of arrows $\operatorname{Arr}(\mathcal{A})$
objects: arrows a: $A \rightarrow A_{0}$ in the base category \mathcal{A} arrows : pairs of arrows $\left(f, f_{0}\right):\left(A, a, A_{0}\right) \rightarrow\left(B, b, B_{0}\right)$ such that

commutes

Previous Season

Previous Season

(Quite a lot of years ago) The canonical embedding

$$
\mathcal{U}: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \quad \mathcal{U}(A)=\left(\mathrm{id}_{A}: A \rightarrow A\right)
$$

1.
2.

2.1
2.2
2.3
2.4

Previous Season

(Quite a lot of years ago) The canonical embedding

$$
\mathcal{U}: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \mathcal{U}(A)=\left(\mathrm{id}_{\mathcal{A}}: A \rightarrow A\right)
$$

1. adds freely a factorization system (Korostenski, Tholen)
2.

2.1
2.2
2.3
2.4

Previous Season

(Quite a lot of years ago) The canonical embedding

$$
\mathcal{U}: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \quad \mathcal{U}(A)=\left(\mathrm{id}_{\mathcal{A}}: A \rightarrow A\right)
$$

1. adds freely a factorization system (Korostenski, Tholen)
2. under suitable assumptions on \mathcal{A}, enters (in some disguised form) into several other completion processes :
2.1
2.2
2.3
2.4

Previous Season

(Quite a lot of years ago) The canonical embedding

$$
\mathcal{U}: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \quad \mathcal{U}(A)=\left(\mathrm{id}_{\mathcal{A}}: A \rightarrow A\right)
$$

1. adds freely a factorization system (Korostenski, Tholen)
2. under suitable assumptions on \mathcal{A}, enters (in some disguised form) into several other completion processes :
2.1 preregular completion
2.2 reflexive coequalizer completion
2.3 exact completion
2.4 homological completion
(Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky, ...)

In this Episode

In this Episode

(Danger: spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

In this Episode

(Danger : spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

For a given arrow a: $A \rightarrow A_{0}$ in \mathcal{A}, we get the diagram

In this Episode

(Danger : spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

For a given arrow $a: A \rightarrow A_{0}$ in \mathcal{A}, we get the diagram

In this Episode

(Danger: spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

For a given arrow $a: A \rightarrow A_{0}$ in \mathcal{A}, we get the diagram

What is this ? Nothing! But we get also the diagram

In this Episode

(Danger: spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

For a given arrow $a: A \rightarrow A_{0}$ in \mathcal{A}, we get the diagram

What is this ? Nothing! But we get also the diagram

In this Episode

(Danger: spoil !) If the category \mathcal{A} has an initial object \emptyset, there is another embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

For a given arrow $a: A \rightarrow A_{0}$ in \mathcal{A}, we get the diagram

What is this ? Nothing! But we get also the diagram

and this is the strong homotopy cokernel of $\Gamma\left(a: A \rightarrow A_{0}\right)$ in $\operatorname{Arr}(\mathcal{A})$

Nullhomotopies

Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category \mathcal{B}, we need a structure Θ of nullhomotopies on \mathcal{B} (Grandis) :
1.
2.
3.
3.1
3.2

Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category \mathcal{B}, we need a structure Θ of nullhomotopies on \mathcal{B} (Grandis) :

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
2.
3.

3.1
3.2

Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category \mathcal{B}, we need a structure Θ of nullhomotopies on \mathcal{B} (Grandis) :

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$, a map

$$
f \circ-\circ h: \Theta(g) \rightarrow \Theta(f \cdot g \cdot h)
$$

3.

3.1
3.2

Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category \mathcal{B}, we need a structure Θ of nullhomotopies on \mathcal{B} (Grandis) :

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$, a map

$$
f \circ-\circ h: \Theta(g) \rightarrow \Theta(f \cdot g \cdot h)
$$

3. in such a way that, for every $\lambda \in \Theta(g)$,

$$
3.1\left(f^{\prime} \cdot f\right) \circ \lambda \circ\left(g \cdot g^{\prime}\right)=f^{\prime} \circ(f \circ \lambda \circ g) \circ g^{\prime}
$$

$3.2 \operatorname{id}_{B} \circ \lambda \circ \mathrm{id}_{C}=\lambda$

Nullhomotopies

To express the notion of (strong) homotopy cokernel in a category \mathcal{B}, we need a structure Θ of nullhomotopies on \mathcal{B} (Grandis) :

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$, a map

$$
f \circ-\circ h: \Theta(g) \rightarrow \Theta(f \cdot g \cdot h)
$$

3. in such a way that, for every $\lambda \in \Theta(g)$,

$$
3.1\left(f^{\prime} \cdot f\right) \circ \lambda \circ\left(g \cdot g^{\prime}\right)=f^{\prime} \circ(f \circ \lambda \circ g) \circ g^{\prime}
$$

$$
3.2 \operatorname{id}_{B} \circ \lambda \circ \operatorname{id}_{C}=\lambda
$$

Notation for $\lambda \in \Theta(g)$:

Nullhomotopies

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put
$\Theta_{\mathcal{A}}(B \xrightarrow{g} C)=\left\{\left(g_{1}: B \rightarrow A, g_{2}: A \rightarrow C\right) \mid g_{1} \cdot g_{2}=g\right.$ and $\left.A \in \mathcal{A}\right\}$

Nullhomotopies

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put
$\Theta_{\mathcal{A}}(B \xrightarrow{g} C)=\left\{\left(g_{1}: B \rightarrow A, g_{2}: A \rightarrow C\right) \mid g_{1} \cdot g_{2}=g\right.$ and $\left.A \in \mathcal{A}\right\}$
Example: in particular, if \mathcal{B} has an initial object \emptyset, we put

$$
\Theta_{\emptyset}(B \xrightarrow{g} C)=\left\{\lambda: B \rightarrow \emptyset \mid \lambda \cdot \emptyset_{c}=g\right\}
$$

Nullhomotopies

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put
$\Theta_{\mathcal{A}}(B \xrightarrow{g} C)=\left\{\left(g_{1}: B \rightarrow A, g_{2}: A \rightarrow C\right) \mid g_{1} \cdot g_{2}=g\right.$ and $\left.A \in \mathcal{A}\right\}$
Example : in particular, if \mathcal{B} has an initial object \emptyset, we put

$$
\Theta_{\emptyset}(B \xrightarrow{g} C)=\left\{\lambda: B \rightarrow \emptyset \mid \lambda \cdot \emptyset_{c}=g\right\}
$$

Example: if \mathcal{B} is a 2-category and \mathcal{Z} an ideal of arrows in \mathcal{B}, we put

$$
\Theta_{\mathcal{Z}}(B \xrightarrow{g} C)=\left\{2 \text {-cells } \left.B \frac{g}{\Uparrow \lambda} C \right\rvert\, s \in \mathcal{Z}\right\}
$$

Nullhomotopies

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put

$$
\Theta_{\mathcal{A}}(B \xrightarrow{g} C)=\left\{\left(g_{1}: B \rightarrow A, g_{2}: A \rightarrow C\right) \mid g_{1} \cdot g_{2}=g \text { and } A \in \mathcal{A}\right\}
$$

Example : in particular, if \mathcal{B} has an initial object \emptyset, we put

$$
\Theta_{\emptyset}(B \xrightarrow{g} C)=\left\{\lambda: B \rightarrow \emptyset \mid \lambda \cdot \emptyset_{c}=g\right\}
$$

Example: if \mathcal{B} is a 2-category and \mathcal{Z} an ideal of arrows in \mathcal{B}, we put

$$
\Theta_{\mathcal{Z}}(B \xrightarrow{g} C)=\left\{2 \text {-cells } \left.B \frac{g}{\Uparrow \lambda} C \right\rvert\, s \in \mathcal{Z}\right\}
$$

Example: in particular, if \mathcal{B} has a zero object 0 and \mathcal{Z} is the ideal of zero arrows, we write Θ_{0} instead of $\Theta_{\mathcal{Z}}$. This example justifies the general notation adopted for nullhomotopies.

Nullhomotopies

Main example: if \mathcal{A} is additive, then $\operatorname{Arr}(\mathcal{A})$ is a 2-category; if \mathcal{A} is any category, what remains in $\operatorname{Arr}(\mathcal{A})$ is a structure of nullhomotopies:

Nullhomotopies

Main example: if \mathcal{A} is additive, then $\operatorname{Arr}(\mathcal{A})$ is a 2-category; if \mathcal{A} is any category, what remains in $\operatorname{Arr}(\mathcal{A})$ is a structure of nullhomotopies:
$\Theta_{\Delta}\left(\left(A, a, A_{0}\right) \xrightarrow{\left(f, f_{0}\right)}\left(B, b, B_{0}\right)\right)=\left\{\lambda: A_{0} \rightarrow B \mid a \cdot \lambda=f\right.$ and $\left.\lambda \cdot b=f_{0}\right\}$

Nullhomotopies

Main example: if \mathcal{A} is additive, then $\operatorname{Arr}(\mathcal{A})$ is a 2-category; if \mathcal{A} is any category, what remains in $\operatorname{Arr}(\mathcal{A})$ is a structure of nullhomotopies:
$\Theta_{\Delta}\left(\left(A, a, A_{0}\right) \xrightarrow{\left(f, f_{0}\right)}\left(B, b, B_{0}\right)\right)=\left\{\lambda: A_{0} \rightarrow B \mid a \cdot \lambda=f\right.$ and $\left.\lambda \cdot b=f_{0}\right\}$

Some more examples are discussed in Episode 2. They are related to :

- generalized (co)radicals and, in particular, (idempotent) (co)monads,
- prepointed categories and, in particular, multipointed categories,
- ideals of arrows seen as discrete structures of nullhomotopies.
Θ-cokernels

Θ-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ), the Θ-cokernel of an arrow $g: B \rightarrow C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_{g}: C \rightarrow \mathcal{C}(g), \gamma_{g} \in \Theta\left(g \cdot c_{g}\right)$

Θ-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ), the Θ-cokernel of an arrow $g: B \rightarrow C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_{g}: C \rightarrow \mathcal{C}(g), \gamma_{g} \in \Theta\left(g \cdot c_{g}\right)$

such that, for any other triple $D \in \mathcal{B}, h: C \rightarrow D, \lambda \in \Theta(g \cdot h)$

Θ-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ), the Θ-cokernel of an arrow $g: B \rightarrow C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_{g}: C \rightarrow \mathcal{C}(g), \gamma_{g} \in \Theta\left(g \cdot c_{g}\right)$

such that, for any other triple $D \in \mathcal{B}, h: C \rightarrow D, \lambda \in \Theta(g \cdot h)$ there exists a unique arrow $h^{\prime}: \mathcal{C}(g) \rightarrow D$ such that

$$
c_{g} \cdot h^{\prime}=h \text { and } \gamma_{g} \circ h^{\prime}=\lambda
$$

Θ-cokernels

The Θ-cokernel of $g: B \rightarrow C$ is strong when, in the situation

Θ-cokernels

The Θ-cokernel of $g: B \rightarrow C$ is strong when, in the situation

if $\gamma_{g} \circ h=g \circ \lambda$, then there exists a unique $\lambda^{\prime} \in \Theta(h)$ such that

$$
c_{g} \circ \lambda^{\prime}=\lambda
$$

Θ-cokernels

A couple of egocentric motivations to study Θ-(co)kernels :
1.
2.

Θ-cokernels

A couple of egocentric motivations to study Θ-(co)kernels :

1. In Episode 1, with Jacqmin, Mantovani and Metere, we used Θ-(co)kernels to give an internal unified version of the Gabriel-Ulmer exact sequence associated with a functor of pointed groupoids and of the Brown exact sequence associated with a fibration of groupoids.
2.

Θ-cokernels

A couple of egocentric motivations to study Θ-(co)kernels :

1. In Episode 1, with Jacqmin, Mantovani and Metere, we used Θ-(co)kernels to give an internal unified version of the Gabriel-Ulmer exact sequence associated with a functor of pointed groupoids and of the Brown exact sequence associated with a fibration of groupoids.
2. In Episode 2, with Mantovani and Messora, we used Θ-(co)kernels to define a general notion of homotopy torsion theory which includes classical (abelian) torsion theories, torsion theories in multipointed and in prepointed categories, and pretorsion theories.

Θ-cokernels

An example from Episode 2 : given a pre-coradical

Θ-cokernels

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on \mathcal{B} by

$$
\Theta_{\gamma}(B \xrightarrow{g} C)=\left\{\lambda: \mathcal{S}(B) \rightarrow C \mid \gamma_{B} \cdot \lambda=g\right\}
$$

Θ-cokernels

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on \mathcal{B} by

$$
\Theta_{\gamma}(B \xrightarrow{g} C)=\left\{\lambda: \mathcal{S}(B) \rightarrow C \mid \gamma_{B} \cdot \lambda=g\right\}
$$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ}-cokernel of id_{B}

Θ-cokernels

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on \mathcal{B} by

$$
\Theta_{\gamma}(B \xrightarrow{g} C)=\left\{\lambda: \mathcal{S}(B) \rightarrow C \mid \gamma_{B} \cdot \lambda=g\right\}
$$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ}-cokernel of id_{B}

Moreover, if \mathcal{S} is an idempotent monad and γ is its unit, then this Θ_{γ}-cokernel is strong

Θ-cokernels

Main example : if \mathcal{A} has pushouts, the Θ_{Δ}-cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $\left(f, f_{0}\right):\left(A, a, A_{0}\right) \rightarrow\left(B, b, B_{0}\right)$ is a diagram of shape

Θ-cokernels

Main example : if \mathcal{A} has pushouts, the Θ_{Δ}-cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $\left(f, f_{0}\right):\left(A, a, A_{0}\right) \rightarrow\left(B, b, B_{0}\right)$ is a diagram of shape

where the two following diagrams should commute

Θ-cokernels

Main example : if \mathcal{A} has pushouts, the Θ_{Δ}-cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $\left(f, f_{0}\right):\left(A, a, A_{0}\right) \rightarrow\left(B, b, B_{0}\right)$ is a diagram of shape

So, just replace the two previous diagrams with the corresponding colimits and we get the strong Θ_{Δ}-cokernel of $\left(f, f_{0}\right)$ in $\operatorname{Arr}(\mathcal{A})$

The heart of the story

The heart of the story

Why, if \mathcal{A} has finite colimits, the embedding

$$
\Gamma: \mathcal{A} \rightarrow \operatorname{Arr}(\mathcal{A}), \quad \Gamma(A)=\left(\emptyset_{A}: \emptyset \rightarrow A\right)
$$

is the completion of \mathcal{A} under strong Θ-cokernels ?

The heart of the story

First, the objects :

The heart of the story

First, the objects : we already observed that, for any object a : $A \rightarrow A_{0}$ of $\operatorname{Arr}(\mathcal{A})$, the following is a strong Θ_{Δ}-cokernel

The heart of the story

First, the objects : we already observed that, for any object a : $A \rightarrow A_{0}$ of $\operatorname{Arr}(\mathcal{A})$, the following is a strong Θ_{Δ}-cokernel

$$
\Gamma A \xrightarrow[\Gamma a]{\Gamma} \Gamma A_{0} \xrightarrow\left[\left(\emptyset_{A}, \mathrm{id}_{A_{0}}\right]{\operatorname{idd}_{A} \rrbracket}\left(A, a, A_{0}\right)\right.
$$

The heart of the story

Second, the arrows :

The heart of the story

Second, the arrows : every arrow in $\operatorname{Arr}(\mathcal{A})$

The heart of the story

Second, the arrows : every arrow in $\operatorname{Arr}(\mathcal{A})$

is the unique extension to the Θ_{Δ}-cokernels

The heart of the story

Third, the nullhomotopies :

The heart of the story

Third, the nullhomotopies : every nullhomotopy in $\operatorname{Arr}(\mathcal{A})$

The heart of the story

Third, the nullhomotopies : every nullhomotopy in $\operatorname{Arr}(\mathcal{A})$

is the unique extension to the strong Θ_{Δ}-cokernels

Two technical details

Two technical details

In order to state correctly the main result, we need two technical details.

Two technical details

In order to state correctly the main result, we need two technical details.
First : in a category with nullhomotopies (\mathcal{B}, Θ), the reduced interchange (Grandis) is the following condition.

Two technical details

In order to state correctly the main result, we need two technical details.
First : in a category with nullhomotopies (\mathcal{B}, Θ), the reduced interchange (Grandis) is the following condition. In the situation

then $\alpha \circ g=f \circ \beta$

Two technical details

Main example: in $\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)$, the reduced interchange is true

Two technical details

Main example: in $\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)$, the reduced interchange is true

$\alpha \circ\left(g, g_{0}\right)=\alpha \cdot g=\alpha \cdot b \cdot \beta=f_{0} \cdot \beta=\left(f, f_{0}\right) \circ \beta$

Two technical details

Example :
1.
2.

Two technical details

Example:

1. If \mathcal{B} is a 2-category and \mathcal{Z} is an ideal of arrows in \mathcal{B}, the reduced interchange in general is not true in $\left(\mathcal{B}, \Theta_{\mathcal{Z}}\right)$. In fact, the reduced interchange would imply that for every arrow $s \in \mathcal{Z}$ there exists a unique 2 -cell $s \Rightarrow s$.
2.

Two technical details

Example:

1. If \mathcal{B} is a 2-category and \mathcal{Z} is an ideal of arrows in \mathcal{B}, the reduced interchange in general is not true in $\left(\mathcal{B}, \Theta_{\mathcal{Z}}\right)$. In fact, the reduced interchange would imply that for every arrow $s \in \mathcal{Z}$ there exists a unique 2 -cell $s \Rightarrow s$.
2. Nevertheless, the reduced interchange is true if \mathcal{B} has a 2-zero object and \mathcal{Z} is the ideal of zero arrows.

Two technical details

In order to state correctly the main result, we need two technical details.
Second: Θ-strong colimits in a category with nullhomotopies (\mathcal{B}, Θ).
1.
2.

Two technical details

In order to state correctly the main result, we need two technical details.
Second: Θ-strong colimits in a category with nullhomotopies (\mathcal{B}, Θ).

1. An initial object \emptyset is Θ-strong if, for every object $B \in \mathcal{B}$, one has $\Theta\left(\emptyset_{B}: \emptyset \rightarrow B\right)=\{*\}$
2.

Two technical details

In order to state correctly the main result, we need two technical details.
Second: Θ-strong colimits in a category with nullhomotopies (\mathcal{B}, Θ).

1. An initial object \emptyset is Θ-strong if, for every object $B \in \mathcal{B}$, one has $\Theta\left(\emptyset_{B}: \emptyset \rightarrow B\right)=\{*\}$
2. Consider the factorization through the pushout of f and g

Two technical details

In order to state correctly the main result, we need two technical details.
Second: Θ-strong colimits in a category with nullhomotopies (\mathcal{B}, Θ).

1. An initial object \emptyset is Θ-strong if, for every object $B \in \mathcal{B}$, one has $\Theta\left(\emptyset_{B}: \emptyset \rightarrow B\right)=\{*\}$
2. Consider the factorization through the pushout of f and g

The pushout is Θ-strong if, given $\alpha \in \Theta(x)$ and $\beta \in \Theta(y)$ such that $f \circ \alpha=g \circ \beta$, there exists a unique $[\alpha, \beta] \in \Theta([x, y])$ such that $g^{\prime} \circ[\alpha, \beta]=\alpha$ and $f^{\prime} \circ[\alpha, \beta]=\beta$

Two technical details

Main example: if \mathcal{A} has finite colimits, then $\operatorname{Arr}(\mathcal{A})$ has finite colimits and they are Θ_{Δ}-strong

Two technical details

Main example: if \mathcal{A} has finite colimits, then $\operatorname{Arr}(\mathcal{A})$ has finite colimits and they are Θ_{Δ}-strong

Example: if \mathcal{B} is a 2-category and we take, as ideal of arrows, $\mathcal{Z}=\mathcal{B}$, then to be $\Theta_{\mathcal{Z}}$-strong means to be a 2 -colimit

Two technical details

From Episode 2 : why Θ-strong colimits are useful ?
1.
2.

Two technical details

From Episode 2 : why Θ-strong colimits are useful ?

1. In (\mathcal{B}, Θ), if \mathcal{B} has strong Θ-cokernels of identity arrows and Θ-strong pushouts, then it has all Θ-cokernels and they are strong. 2.

Two technical details

From Episode 2 : why Θ-strong colimits are useful ?

1. In (\mathcal{B}, Θ), if \mathcal{B} has strong Θ-cokernels of identity arrows and Θ-strong pushouts, then it has all Θ-cokernels and they are strong.
2. In particular, given a prepointed category

$$
\mathcal{A} \underset{\mathcal{D}}{\stackrel{\mathcal{C}}{\leftrightarrows}} \mathcal{B} \quad \mathcal{C} \dashv \mathcal{U} \dashv \mathcal{D} \quad \mathcal{U} \text { full and faithful }
$$

and the structure Θ on \mathcal{B} induced by the unit of $\mathcal{C} \dashv \mathcal{U}$ or by the counit of $\mathcal{U} \dashv \mathcal{D}$,

Two technical details

From Episode 2 : why Θ-strong colimits are useful ?

1. In (\mathcal{B}, Θ), if \mathcal{B} has strong Θ-cokernels of identity arrows and Θ-strong pushouts, then it has all Θ-cokernels and they are strong.
2. In particular, given a prepointed category

$$
\mathcal{A} \underset{\underset{\mathcal{D}}{\leftrightarrows}}{\underset{\mathcal{C}}{\leftrightarrows}} \mathcal{B} \quad \mathcal{C} \dashv \mathcal{U} \dashv \mathcal{D} \quad \mathcal{U} \text { full and faithful }
$$

and the structure Θ on \mathcal{B} induced by the unit of $\mathcal{C} \dashv \mathcal{U}$ or by the counit of $\mathcal{U} \dashv \mathcal{D}$, if \mathcal{B} has pullbacks and pushouts, then they are Θ-strong and \mathcal{B} automatically has strong Θ-kernels and strong Θ-cokernels.

The main result

The main result

Main result: If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

The main result

Main result: If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

- Θ satisfies the reduced interchange,

The main result

Main result : If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

- Θ satisfies the reduced interchange,
- \mathcal{B} has strong Θ-cokernels and Θ-strong finite colimits,

The main result

Main result: If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

- Θ satisfies the reduced interchange,
- \mathcal{B} has strong Θ-cokernels and Θ-strong finite colimits,
- \mathcal{F} preserves finite colimits

The main result

Main result: If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

- Θ satisfies the reduced interchange,
- \mathcal{B} has strong Θ-cokernels and Θ-strong finite colimits,
- \mathcal{F} preserves finite colimits

The main result

Main result: If \mathcal{A} is a category with finite colimits, then the embedding

$$
\Gamma: \mathcal{A} \longrightarrow\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right)
$$

is universal among the functors $\mathcal{F}: \mathcal{A} \rightarrow(\mathcal{B}, \Theta)$ such that

- Θ satisfies the reduced interchange,
- \mathcal{B} has strong Θ-cokernels and Θ-strong finite colimits,
- \mathcal{F} preserves finite colimits

This means that, for any \mathcal{F} as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal{F}}:\left(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}\right) \rightarrow(\mathcal{B}, \Theta)$ which preserves Θ-cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal{F}} \simeq \mathcal{F}$

Forthcoming Episode

Forthcoming Episode

In the forthcoming Episode 4, with Dupont we will show that, if \mathcal{A} is an abelian category, then the bicategory of fractions

$$
\operatorname{Arr}(\mathcal{A})\left[\Sigma^{-1}\right]
$$

is a 2-abelian bicategory.

Forthcoming Episode

In the forthcoming Episode 4, with Dupont we will show that, if \mathcal{A} is an abelian category, then the bicategory of fractions

$$
\operatorname{Arr}(\mathcal{A})\left[\Sigma^{-1}\right]
$$

is a 2-abelian bicategory.
Here Σ is a class of arrows obtained by intersection from two factorization systems constructed in $\operatorname{Arr}(\mathcal{A})$ using Θ_{Δ}-kernels and Θ_{Δ}-cokernels.

Forthcoming Episode

In the forthcoming Episode 4, with Dupont we will show that, if \mathcal{A} is an abelian category, then the bicategory of fractions

$$
\operatorname{Arr}(\mathcal{A})\left[\Sigma^{-1}\right]
$$

is a 2-abelian bicategory.
Here Σ is a class of arrows obtained by intersection from two factorization systems constructed in $\operatorname{Arr}(\mathcal{A})$ using Θ_{Δ}-kernels and Θ_{Δ}-cokernels.

See you in Palermo for PSSL 108 in September!

