Completions, Season 2, Episode 3 : Completion under strong homotopy cokernels

Enrico M. Vitale, UCLouvain

June 16, 2023

ItaCa Fest

Table of contents

1. Starring

- 2. Previous Season
- 3. In this Episode
- 4. Nullhomotopies
- 5. Θ -cokernels
- 6. The heart of the story
- 7. Two technical details
- 8. The main result
- 9. Forthcoming Episode

Starring

The category of arrows $\mbox{\rm Arr}({\cal A})$

objects : arrows $a: A \to A_0$ in the base category \mathcal{A} arrows : pairs of arrows $(f, f_0): (A, a, A_0) \to (B, b, B_0)$ such that

commutes

The category of arrows Arr(A)

objects : arrows a: $A \to A_0$ in the base category ${\cal A}$

 $\begin{array}{c|c} A & \longrightarrow & B \\ \hline & & & \\ A & & & \\ A_0 & \hline & & & B_0 \end{array}$

commutes

The category of arrows Arr(A)

objects : arrows $a: A \to A_0$ in the base category \mathcal{A} arrows : pairs of arrows $(f, f_0): (A, a, A_0) \to (B, b, B_0)$ such that

commutes

Previous Season

$$\mathcal{U}\colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \mathcal{U}(\mathcal{A}) = (\operatorname{id}_{\mathcal{A}}\colon \mathcal{A} \to \mathcal{A})$$

- 1. adds freely a factorization system (Korostenski, Tholen)
- 2. under suitable assumptions on .4. enters (in some disguised form into several other completion processes :
 - 2.1 preregular completion
 - 2.2 reflexive coequalizer completion
 - 2.3 exact completion
 - 2.4 homological completion

'Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky, ...)

$$\mathcal{U} \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \mathcal{U}(\mathcal{A}) = (\operatorname{id}_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A})$$

- 1. adds freely a factorization system (Korostenski, Tholen)
- 2. under suitable assumptions on 24 enters (in some disguised form
 - 2.1 preregular completion
 - 2.2 reflexive coequalizer completion
 - 2.3 exact completion
 - 2.4 homological completion

Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky,) 👘

$$\mathcal{U} \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \mathcal{U}(\mathcal{A}) = (\operatorname{id}_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A})$$

- 1. adds freely a factorization system (Korostenski, Tholen)
- 2. under suitable assumptions on A, enters (in some disguised form) into several other completion processes :
 - 2.1
 - 2.2 reflexive coequalizer completion
 - 2.3 exact completion
 - 2.4 homological completion

Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky, . . .)

$$\mathcal{U} \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \mathcal{U}(\mathcal{A}) = (\operatorname{id}_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A})$$

- 1. adds freely a factorization system (Korostenski, Tholen)
- 2. under suitable assumptions on A, enters (in some disguised form) into several other completion processes :
 - 2.1 preregular completion
 - 2.2 reflexive coequalizer completion
 - 2.3 exact completion
 - 2.4 homological completion

(Freyd, Pitts, Carboni, Bunge, Grandis, Neeman, Rosicky, ...)

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset \to \mathcal{A})$$

For a given arrow $a \colon A \to A_0$ in \mathcal{A} , we get the diagram

What is this ? Nothing ! But we get also the diagram

and this is the strong homotopy cokernel of $\Gamma(a: A \to A_0)$ in Arr (\mathcal{A})

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset \to \mathcal{A})$$

For a given arrow a: $A \to A_0$ in $\mathcal{A},$ we get the diagram

and this is the strong homotopy cokernel of $\Gamma(a: A \rightarrow A_0)$ in Arr (\mathcal{A})

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} o \operatorname{\mathsf{Arr}}(\mathcal{A})\,, \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset o \mathcal{A})$$

For a given arrow $a \colon A \to A_0$ in \mathcal{A} , we get the diagram

What is this ? Nothing ! But we get also the diagram

and this is the strong homotopy cokernel of $\Gamma(a \colon A \to A_0)$ in Arr(A

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} o \operatorname{\mathsf{Arr}}(\mathcal{A})\,, \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset o \mathcal{A})$$

For a given arrow $a \colon A \to A_0$ in \mathcal{A} , we get the diagram

What is this ? Nothing ! But we get also the diagram

and this is the strong homotopy cokernel of $\Gamma(a: A \rightarrow A_0)$ in Arr(A

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}) \,, \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset \to \mathcal{A})$$

For a given arrow $a \colon A \to A_0$ in \mathcal{A} , we get the diagram

What is this ? Nothing ! But we get also the diagram

and this is the strong homotopy cokernel of $\Gamma(a: A \to A_0)$ in Arr (\mathcal{A})

(Danger : spoil !) If the category ${\cal A}$ has an initial object $\emptyset,$ there is another embedding

$$\Gamma \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}) \,, \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset \to \mathcal{A})$$

For a given arrow $a \colon A \to A_0$ in \mathcal{A} , we get the diagram

What is this ? Nothing ! But we get also the diagram

and this is the **strong homotopy cokernel** of $\Gamma(a: A \to A_0)$ in **Arr**(A)

- **1.** for every arrow $B \xrightarrow{s} C$, a set $\Theta(g)$ of nullhomotopies on g.
- **2.** for composable arrows $A \xrightarrow{r} B \xrightarrow{s} C \xrightarrow{n} D$, a map

$f \circ - \circ h \colon \Theta(g) o \Theta(f \cdot g \cdot h)$.

- **3.** in such a way that, for every $\lambda \in \Theta(g)$,
 - 3.1 $(f' \circ f) \circ \lambda \circ (g \circ g') = f' \circ (f \circ \lambda \circ g) \circ g'$
 - 3.2 ide o A o ide =

Notation for $\lambda \in \Theta(g)$: $B \subset (\uparrow \lambda) \subset C$

- 1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
- **2.** for composable arrows $A \longrightarrow B \longrightarrow C \longrightarrow D$, a map

$\Theta(g) \to \Theta(f \cdot g \cdot h)$

- **3.** in such a way that, for every $\lambda \in \Theta(g)$.
 - **3.1** $(f' \cdot f) \circ \lambda \circ (g \cdot g') = f' \circ (f \circ \lambda \circ g) \circ g'$
 - 3.2 ide $\wedge \circ$ id =

Notation for $\lambda \in \Theta(g)$: $B \bigcirc \ \Uparrow \lambda = \bigcirc C$

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g

2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$, a map

$$f \circ - \circ h \colon \Theta(g) \to \Theta(f \cdot g \cdot h)$$

3. In such a way that, for every $\lambda \in \Theta(g)$ 3.1 $(f' \circ f) \circ \lambda \circ (g \circ g') = f' \circ (f \circ \lambda \circ g)$

3.2 id $_{B} \circ \lambda \circ ic$

Notation for $\lambda \in \Theta(g)$: $B \swarrow (h \lambda) \supset C$

1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g

2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$, a map

$$f \circ - \circ h \colon \Theta(g) \to \Theta(f \cdot g \cdot h)$$

in such a way that, for every λ ∈ Θ(g),
(f' ⋅ f) ∘ λ ∘ (g ⋅ g') = f' ∘ (f ∘ λ ∘ g) ∘ g'
id_B ∘ λ ∘ id_C = λ

- 1. for every arrow $B \xrightarrow{g} C$, a set $\Theta(g)$ of nullhomotopies on g
- 2. for composable arrows $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$. a map

$$f \circ - \circ h \colon \Theta(g) \to \Theta(f \cdot g \cdot h)$$

3. in such a way that, for every $\lambda \in \Theta(g)$, 3.1 $(f' \cdot f) \circ \lambda \circ (g \cdot g') = f' \circ (f \circ \lambda \circ g) \circ g'$ **3.2** $\operatorname{id}_{B} \circ \lambda \circ \operatorname{id}_{C} = \lambda$

 $\mathsf{Example}$: if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put

$$\Theta_{\mathcal{A}}(\ B \xrightarrow{g} C \) = \{(g_1 \colon B \to A, g_2 \colon A \to C) \mid g_1 \cdot g_2 = g \text{ and } A \in \mathcal{A}\}$$

Example : in particular, if ${\cal B}$ has an initial object \emptyset , we put

$\Theta_{\emptyset}(B \xrightarrow{s} C) = \{\lambda \colon B \to \emptyset \mid \lambda \cdot \emptyset_{c} = g\}$

Example : if $\mathcal B$ is a 2-category and $\mathcal Z$ an ideal of arrows in $\mathcal B$, we put

 $\Theta_{\mathcal{Z}}(B \xrightarrow{\mathfrak{s}} \mathbb{C}) = \Big\{ 2\text{-cells } B \Big\{ f \mid \lambda \} \Big\} \subset f \mid \mathfrak{s} \in \mathcal{Z}$

Example : in particular, if \mathcal{B} has a zero object 0 and \mathcal{Z} is the ideal of zero arrows, we write Θ_0 instead of $\Theta_{\mathcal{Z}}$. This example justifies the general notation adopted for nullhomotopies.

Example : if $\mathcal{A}\subseteq \mathcal{B}$ is a subcategory, we put

$$\Theta_{\mathcal{A}}(\ B \xrightarrow{g} C \) = \{(g_1 \colon B \to A, g_2 \colon A \to C) \mid g_1 \cdot g_2 = g \text{ and } A \in \mathcal{A}\}$$

Example : in particular, if ${\mathcal B}$ has an initial object $\emptyset,$ we put

$$\Theta_{\emptyset}(B \xrightarrow{g} C) = \{\lambda \colon B \to \emptyset \mid \lambda \cdot \emptyset_{c} = g\}$$

Example : if \mathcal{B} is a 2-category and \mathcal{Z} an ideal of arrows in \mathcal{B} , we put

 $\Theta_{\mathcal{Z}}(B \xrightarrow{\mathfrak{g}} C) = \left\{ 2 \text{-cells } B \underbrace{\uparrow} \lambda \right\} C \mid \mathfrak{g} \in \mathcal{Z}$

Example : in particular, if \mathcal{B} has a zero object 0 and \mathcal{Z} is the ideal of zero arrows, we write Θ_0 instead of $\Theta_{\mathcal{Z}}$. This example justifies the general notation adopted for nullhomotopies.

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put

$$\Theta_{\mathcal{A}}(\ B \xrightarrow{g} C \) = \{(g_1 \colon B \to A, g_2 \colon A \to C) \mid g_1 \cdot g_2 = g \text{ and } A \in \mathcal{A}\}$$

Example : in particular, if \mathcal{B} has an initial object \emptyset , we put

$$\Theta_{\emptyset}(B \xrightarrow{g} C) = \{\lambda \colon B \to \emptyset \mid \lambda \cdot \emptyset_{c} = g\}$$

Example : if \mathcal{B} is a 2-category and \mathcal{Z} an ideal of arrows in \mathcal{B} , we put

Example : in particular, if B has a zero object 0 and Z is the ideal o zero arrows, we write Θ_0 instead of Θ_Z . This example justifies the general notation adopted for nullhomotopies.

Example : if $\mathcal{A} \subseteq \mathcal{B}$ is a subcategory, we put

$$\Theta_{\mathcal{A}}(\ B \xrightarrow{g} C \) = \{(g_1 \colon B \to A, g_2 \colon A \to C) \mid g_1 \cdot g_2 = g \text{ and } A \in \mathcal{A}\}$$

Example : in particular, if \mathcal{B} has an initial object \emptyset , we put

$$\Theta_{\emptyset}(B \xrightarrow{g} C) = \{\lambda \colon B \to \emptyset \mid \lambda \cdot \emptyset_{c} = g\}$$

Example : if \mathcal{B} is a 2-category and \mathcal{Z} an ideal of arrows in \mathcal{B} , we put

Example : in particular, if \mathcal{B} has a zero object 0 and \mathcal{Z} is the ideal of zero arrows, we write Θ_0 instead of $\Theta_{\mathcal{Z}}$. This example justifies the general notation adopted for nullhomotopies.

Main example : if A is additive, then Arr(A) is a 2-category ; if A is any category, what remains in Arr(A) is a structure of nullhomotopies :

generalized (co)radicals and, in particular, (idempotent) (co)monads,

prepointed categories and, in particular, multipointed categories,

ideals of arrows seen as discrete structures of nullhomotopies.

Main example : if A is additive, then Arr(A) is a 2-category ; if A is any category, what remains in Arr(A) is a structure of nullhomotopies :

$$\Theta_{\Delta}\left((A, a, A_0) \xrightarrow{(f, f_0)} (B, b, B_0) \right) = \{ \lambda \colon A_0 \to B \mid a \cdot \lambda = f \text{ and } \lambda \cdot b = f_0 \}$$

Some more examples are discussed in Episode 2. They are related to :

generalized (co)radicals and, in particular, (idempotent) (co)monads,

prepointed categories and, in particular, multipointed categories

ideals of arrows seen as discrete structures of nullhomotopies.

Main example : if A is additive, then Arr(A) is a 2-category ; if A is any category, what remains in Arr(A) is a structure of nullhomotopies :

$$\Theta_{\Delta}\left((A, a, A_0) \xrightarrow{(f, f_0)} (B, b, B_0) \right) = \{ \lambda \colon A_0 \to B \mid a \cdot \lambda = f \text{ and } \lambda \cdot b = f_0 \}$$

Some more examples are discussed in Episode 2. They are related to :

- generalized (co)radicals and, in particular, (idempotent) (co)monads,
- prepointed categories and, in particular, multipointed categories,
- ideals of arrows seen as discrete structures of nullhomotopies.

⊖-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ) , the Θ -cokernel of an arrow $g: B \to C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_g: C \to \mathcal{C}(g), \gamma_g \in \Theta(g \cdot c_g)$

such that, for any other triple $D \in B$, $h \colon C \to D$, $\lambda \in \Theta(g \cdot h)$ there exists a unique arrow $h' \colon C(g) \to D$ such that

 $c_{oldsymbol{g}} \cdot h' = h$ and $\gamma_{oldsymbol{g}} \circ h' = \lambda$.

⊖-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ) , the Θ -cokernel of an arrow $g: B \to C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_g: C \to \mathcal{C}(g), \gamma_g \in \Theta(g \cdot c_g)$

such that, for any other triple $D \in \mathcal{B}, h \colon C \to D, \lambda \in \Theta(g \cdot h)$

 $c_{\sigma} \cdot h' = h$ and $\gamma_{\sigma} \circ h' = \lambda$

⊖-cokernels

In a category with nullhomotopies (\mathcal{B}, Θ) , the Θ -cokernel of an arrow $g: B \to C$ is a triple $\mathcal{C}(g) \in \mathcal{B}, c_g: C \to \mathcal{C}(g), \gamma_g \in \Theta(g \cdot c_g)$

such that, for any other triple $D \in \mathcal{B}$, $h: C \to D$, $\lambda \in \Theta(g \cdot h)$ there exists a unique arrow $h': \mathcal{C}(g) \to D$ such that

$$c_g \cdot h' = h$$
 and $\gamma_g \circ h' = \lambda$

The Θ -cokernel of $g: B \to C$ is **strong** when, in the situation

if $\gamma_g \circ h = g \circ \lambda$, then there exists a unique $\lambda' \in \Theta(h)$ such that

 $c_g \circ \lambda' = \lambda$

The Θ -cokernel of $g: B \to C$ is **strong** when, in the situation

if $\gamma_g \circ h = g \circ \lambda$, then there exists a unique $\lambda' \in \Theta(h)$ such that

$$c_g \circ \lambda' = \lambda$$

A couple of egocentric motivations to study $\Theta\text{-}(co)kernels$:

- In Episode 1, with Jacqmin, Mantovani and Metere, we used O-(co)kernels to give an internal unified version of the Gabriel-Ulmer exact sequence associated with a functor of pointed groupoids and of the Prove error ecourses according with a fibration of group oids.
- In Episode 2, with Mantovani and Messora, we used O-(co)kernels to define a general notion of homotopy torsion theory which includes classical (abelian) torsion theories, torsion theories in multipointed and in prepointed categories, and pretorsion theories.

A couple of egocentric motivations to study Θ -(co)kernels :

 In Episode 1, with Jacqmin, Mantovani and Metere, we used Θ-(co)kernels to give an internal unified version of the Gabriel-Ulmer exact sequence associated with a functor of pointed groupoids and of the Brown exact sequence associated with a fibration of groupoids.

2.

to define a general notion of homotopy torsion theory which includes classical (abelian) torsion theories, torsion theories in multipointed and in prepointed categories, and pretorsion theories. A couple of egocentric motivations to study Θ -(co)kernels :

- In Episode 1, with Jacqmin, Mantovani and Metere, we used Θ-(co)kernels to give an internal unified version of the Gabriel-Ulmer exact sequence associated with a functor of pointed groupoids and of the Brown exact sequence associated with a fibration of groupoids.
- In Episode 2, with Mantovani and Messora, we used Θ-(co)kernels to define a general notion of homotopy torsion theory which includes classical (abelian) torsion theories, torsion theories in multipointed and in prepointed categories, and pretorsion theories.

Θ -cokernels

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on ${\cal B}$ by .

 $\Theta_{\gamma}(B \xrightarrow{s} C) = \{\lambda \colon \mathcal{S}(B) \to C \mid \gamma_B \cdot \lambda = g\}$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ} -cokernel of id_{B}

 $\mathcal{S}(B)$

 $B \longrightarrow B \longrightarrow S(B)$

Moreover, if ${\mathcal S}$ is an idempotent monad and γ is its unit, then this $egin{array}{c} arphi_{\gamma} ext{-cokernel} ext{ is strong}\end{array}$

Θ -cokernels

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on $\ensuremath{\mathcal{B}}$ by

$$\Theta_{\gamma}(B \xrightarrow{g} C) = \{\lambda \colon \mathcal{S}(B) \to C \mid \gamma_B \cdot \lambda = g\}$$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ} -cokernel of $\mathrm{id}_{\mathcal{B}}$

$B \longrightarrow B \longrightarrow \mathcal{S}(B)$

Moreover, if ${\mathcal S}$ is an idempotent monad and γ is its unit, then this Θ_γ -cokernel is strong

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on $\ensuremath{\mathcal{B}}$ by

$$\Theta_{\gamma}(B \xrightarrow{g} C) = \{\lambda \colon \mathcal{S}(B) \to C \mid \gamma_B \cdot \lambda = g\}$$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ} -cokernel of id_B

Moreover, if ${\mathcal S}$ is an idempotent monad and γ is its unit, then this $egin{array}{c} arphi_{\gamma} ext{-cokernel} ext{ is strong} \end{array}$

An example from Episode 2 : given a pre-coradical

we get a nullohomotopy structure on $\ensuremath{\mathcal{B}}$ by

$$\Theta_{\gamma}(B \xrightarrow{g} C) = \{\lambda \colon \mathcal{S}(B) \to C \mid \gamma_B \cdot \lambda = g\}$$

For every object $B \in \mathcal{B}$, the following is the Θ_{γ} -cokernel of id_B

Moreover, if ${\mathcal S}$ is an idempotent monad and γ is its unit, then this $\Theta_\gamma\text{-cokernel}$ is strong

Main example : if \mathcal{A} has pushouts, the Θ_{Δ} -cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $(f, f_0) : (\mathcal{A}, a, \mathcal{A}_0) \to (\mathcal{B}, b, \mathcal{B}_0)$ is a diagram of shape

where the two following diagrams should commute

Main example : if \mathcal{A} has pushouts, the Θ_{Δ} -cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $(f, f_0) : (\mathcal{A}, a, \mathcal{A}_0) \to (\mathcal{B}, b, \mathcal{B}_0)$ is a diagram of shape

where the two following diagrams should commute

So, just replace these diagrams with the corresponding colimits and we

Main example : if \mathcal{A} has pushouts, the Θ_{Δ} -cokernel in $\operatorname{Arr}(\mathcal{A})$ of an arrow $(f, f_0) : (\mathcal{A}, a, \mathcal{A}_0) \to (\mathcal{B}, b, \mathcal{B}_0)$ is a diagram of shape

So, just replace the two previous diagrams with the corresponding colimits and we get the strong Θ_{Δ} -cokernel of (f, f_0) in **Arr** (\mathcal{A})

Why, if ${\mathcal A}$ has finite colimits, the embedding

$$\Gamma \colon \mathcal{A} \to \operatorname{Arr}(\mathcal{A}), \ \ \Gamma(\mathcal{A}) = (\emptyset_{\mathcal{A}} \colon \emptyset \to \mathcal{A})$$

is the completion of ${\cal A}$ under strong $\Theta\text{-cokernels}$?

First, the **objects** :

First, the **objects** : we already observed that, for any object $a: A \to A_0$ of Arr(A), the following is a strong Θ_{Δ} -cokernel

$\Gamma A \xrightarrow[(0_A, \operatorname{id}_{A_0}]{} (A, a, A_0)$

First, the **objects** : we already observed that, for any object $a: A \to A_0$ of **Arr**(A), the following is a strong Θ_{Δ} -cokernel

Second, the arrows :

is the unique extension to the Θ_Δ -cokernels

Second, the **arrows** : every arrow in Arr(A)

is the unique extension to the Θ_Δ -cokernels

Second, the **arrows** : every arrow in Arr(A)

is the unique extension to the Θ_{Δ} -cokernels

Third, the nullhomotopies : even and homotopy a

is the unique extension to the strong Θ_Δ -cokernels .

Third, the **nullhomotopies** : every nullhomotopy in Arr(A)

is the unique extension to the strong Θ_Δ -cokernels

Third, the **nullhomotopies** : every nullhomotopy in Arr(A)

is the unique extension to the strong Θ_{Δ} -cokernels

In order to state correctly the main result, we need two technical details.

then $\alpha \circ g = f \circ \beta$

In order to state correctly the main result, we need two technical details. First : in a category with nullhomotopies (\mathcal{B}, Θ) , the **reduced interchange** (Grandis) is the following condition.

then $lpha \circ g = f \circ eta$

In order to state correctly the main result, we need two technical details. First : in a category with nullhomotopies (\mathcal{B}, Θ) , the **reduced interchange** (Grandis) is the following condition. In the situation

then $\alpha \circ g = f \circ \beta$

Main example : in $(Arr(A), \Theta_{\Delta})$, the reduced interchange is true

 $\begin{array}{c} A \longrightarrow B \longrightarrow C \\ A \longrightarrow B_{0} \longrightarrow B_{0} \longrightarrow C \end{array}$

 $\alpha \circ (g, g_0) = \alpha \cdot g = \alpha \cdot b \cdot \beta = f_0 \cdot \beta = (f, f_0) \circ \beta$

Main example : in $(Arr(A), \Theta_{\Delta})$, the reduced interchange is true

 $\alpha \circ (g, g_0) = \alpha \cdot g = \alpha \cdot b \cdot \beta = f_0 \cdot \beta = (f, f_0) \circ \beta$

Example :

- If B is a 2-category and Z is an ideal of arrows in B, the reduced interchange in general is not true in (B, Θ_Z). In fact, the reduced interchange would imply that for every arrow s ∈ Z there exists a unique 2-cell s ⇒ s.
- 2. Nevertheless, the reduced interchange is true if \mathcal{B} has a 2-zero object and \mathcal{Z} is the ideal of zero arrows.

Example :

 If B is a 2-category and Z is an ideal of arrows in B, the reduced interchange in general is not true in (B, Θ_Z). In fact, the reduced interchange would imply that for every arrow s ∈ Z there exists a unique 2-cell s ⇒ s.

2.

Nevertheless, the reduced interchange is true if $\mathcal B$ has a 2-zero object and $\mathcal Z$ is the ideal of zero arrows.

Example :

- If B is a 2-category and Z is an ideal of arrows in B, the reduced interchange in general is not true in (B, Θ_Z). In fact, the reduced interchange would imply that for every arrow s ∈ Z there exists a unique 2-cell s ⇒ s.
- Nevertheless, the reduced interchange is true if B has a 2-zero object and Z is the ideal of zero arrows.

In order to state correctly the main result, we need two technical details. Second : Θ -strong colimits in a category with nullhomotopies (\mathcal{B}, Θ).

- **1.** An initial object \emptyset is Θ -strong if, for every object $B \in B$, one has $\Theta(\emptyset_{B} \circ \emptyset \to B) = J \circ b$
- **2.** Consider the factorization through the pushout of f and g

In order to state correctly the main result, we need two technical details.

Second : Θ -strong colimits in a category with nullhomotopies (\mathcal{B}, Θ) .

1. An initial object \emptyset is Θ -strong if, for every object $B \in \mathcal{B}$, one has $\Theta(\emptyset_B \colon \emptyset \to B) = \{*\}$

2. Consider the factorization through the pushout of f and g

The pushout is Θ -strong if, given $\alpha \in \Theta(x)$ and $\beta \in \Theta(y)$ such that $f \circ \alpha = g \circ \beta$, there exists a unique $[\alpha, \beta] \in \Theta([x, y])$ such that $g' \circ [\alpha, \beta] = \alpha$ and $f' \circ [\alpha, \beta] = \beta$

In order to state correctly the main result, we need two technical details.

Second : Θ -strong colimits in a category with nullhomotopies (\mathcal{B}, Θ) .

- 1. An initial object \emptyset is Θ -strong if, for every object $B \in \mathcal{B}$, one has $\Theta(\emptyset_B : \emptyset \to B) = \{*\}$
- 2. Consider the factorization through the pushout of f and g

The pushout is Θ -strong if, given $\alpha \in \Theta(x)$ and $\beta \in \Theta(y)$ such that

 $f \circ \alpha = g \circ \beta$, there exists a unique $[\alpha, \beta] \in \Theta([x, y])$ such that $g' \circ [\alpha, \beta] = \alpha$ and $f' \circ [\alpha, \beta] = \beta$

In order to state correctly the main result, we need two technical details.

Second : Θ -strong colimits in a category with nullhomotopies (\mathcal{B}, Θ) .

- 1. An initial object \emptyset is Θ -strong if, for every object $B \in \mathcal{B}$, one has $\Theta(\emptyset_B : \emptyset \to B) = \{*\}$
- 2. Consider the factorization through the pushout of f and g

The pushout is Θ -strong if, given $\alpha \in \Theta(x)$ and $\beta \in \Theta(y)$ such that $f \circ \alpha = g \circ \beta$, there exists a unique $[\alpha, \beta] \in \Theta([x, y])$ such that $g' \circ [\alpha, \beta] = \alpha$ and $f' \circ [\alpha, \beta] = \beta$

$\label{eq:Main example} \mbox{ if \mathcal{A} has finite colimits, then $Arr($\mathcal{A}$)$ has finite colimits and they are Θ_{Δ}-strong}$

Example : if B is a 2-category and we take, as ideal of arrows, Z = B, then to be Θ_Z -strong means to be a 2-colimit

 $\label{eq:Main example: if \mathcal{A} has finite colimits, then $\operatorname{Arr}(\mathcal{A})$ has finite colimits and they are Θ_{Δ}-strong}$

Example : if \mathcal{B} is a 2-category and we take, as ideal of arrows, $\mathcal{Z} = \mathcal{B}$, then to be $\Theta_{\mathcal{Z}}$ -strong means to be a 2-colimit

From Episode 2 : why $\Theta\text{-strong}$ colimits are useful ?

 In (β, Θ), if β has strong Θ-cokernels of identity arrows and Θ-strong pushouts, then it has all Θ-cokernels and they are strong.
In particular, given a prepointed category

 $\mathcal{A} \xleftarrow{u \longrightarrow} \mathcal{B} \quad \mathcal{C} \dashv \mathcal{U} \dashv \mathcal{D} \quad \mathcal{U} \text{ full and faithful}$

and the structure Θ on \mathcal{B} induced by the unit of $\mathcal{C} \dashv \mathcal{U}$ or by the counit of $\mathcal{U} \dashv \mathcal{D}$, if \mathcal{B} has pullbacks and pushouts, then they are Θ -strong and \mathcal{B} automatically has strong Θ -kernels and strong Θ -cokernels.

From Episode 2 : why Θ -strong colimits are useful ?

- In (B,Θ), if B has strong Θ-cokernels of identity arrows and Θ-strong pushouts, then it has all Θ-cokernels and they are strong.
- 2. In particular, given a prepointed categor

 $\mathcal{A} \xleftarrow{\qquad} \mathcal{B} \qquad \mathcal{C} \dashv \mathcal{D} \qquad \mathcal{U} \text{ full and faithful} \\ \xleftarrow{\qquad} \mathcal{D}$

and the structure Θ on \mathcal{B} induced by the unit of $\mathcal{C} \dashv \mathcal{U}$ or by the counit of $\mathcal{U} \dashv \mathcal{D}$, if \mathcal{B} has pullbacks and pushouts, then they are Θ -strong and \mathcal{B} automatically has strong Θ -kernels and strong Θ -cokernels.

From Episode 2 : why Θ -strong colimits are useful ?

- 1. In (\mathcal{B}, Θ) , if \mathcal{B} has strong Θ -cokernels of identity arrows and Θ -strong pushouts, then it has all Θ -cokernels and they are strong.
- 2. In particular, given a prepointed category

$$\mathcal{A} \xrightarrow[]{\mathcal{C}} \mathcal{B} \qquad \mathcal{C} \dashv \mathcal{U} \dashv \mathcal{D} \qquad \mathcal{U} \text{ full and faithful}$$

and the structure Θ on $\mathcal B$ induced by the unit of $\mathcal C\dashv \mathcal U$ or by the counit of $\mathcal U\dashv \mathcal D,$

 Θ -strong and ${\cal B}$ automatically has strong Θ -kernels and strong .

 Θ -cokernels.

From Episode 2 : why Θ -strong colimits are useful ?

- 2. In particular, given a prepointed category

$$\mathcal{A} \xrightarrow[]{\mathcal{C}} \mathcal{B} \qquad \mathcal{C} \dashv \mathcal{U} \dashv \mathcal{D} \qquad \mathcal{U} \text{ full and faithful}$$

and the structure Θ on \mathcal{B} induced by the unit of $\mathcal{C} \dashv \mathcal{U}$ or by the counit of $\mathcal{U} \dashv \mathcal{D}$, if \mathcal{B} has pullbacks and pushouts, then they are Θ -strong and \mathcal{B} automatically has strong Θ -kernels and strong Θ -cokernels.

 $\mbox{Main result}$: If ${\mathcal A}$ is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon\mathcal{A} o(\mathcal{B},\Theta)$ such that

• \mathcal{B} has strong Θ -cokernels and Θ -strong finite colimit

• *F* preserves finite colimits

 $\mathcal{A} \xrightarrow{\Gamma} \mathsf{Arr}(\mathcal{A})$

This means that, for any \mathcal{F} as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal{F}}$: $(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}) \to (\mathcal{B}, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal{F}} \simeq \mathcal{F}$

 $\mbox{Main result}$: If ${\mathcal A}$ is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon \mathcal{A}\to (\mathcal{B},\Theta)$ such that

• Θ satisfies the reduced interchange,

F preserves finite colimits

This means that, for any $\mathcal F$ as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal F}$: $(\operatorname{Arr}(\mathcal A), \Theta_\Delta) \to (\mathcal B, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal F} \simeq \mathcal F$

Main result : If \mathcal{A} is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon \mathcal{A}\to (\mathcal{B},\Theta)$ such that

- Θ satisfies the reduced interchange,
- $\mathcal B$ has strong Θ -cokernels and Θ -strong finite colimits,

This means that, for any \mathcal{F} as above, there exists an essentially unique morphism of categories with nullhomotopies $\hat{\mathcal{F}}$: $(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}) \to (\mathcal{B}, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \hat{\mathcal{F}} \simeq J$

 $\mbox{Main result}$: If ${\mathcal A}$ is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon \mathcal{A}\to (\mathcal{B},\Theta)$ such that

- Θ satisfies the reduced interchange,
- + ${\cal B}$ has strong $\Theta\text{-cokernels}$ and $\Theta\text{-strong}$ finite colimits,
- ${\mathcal F}$ preserves finite colimits

This means that, for any $\mathcal F$ as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal F}$: $(\operatorname{Arr}(\mathcal A), \Theta_{\Delta}) \to (\mathcal B, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal F} \simeq \mathcal F$

Main result : If \mathcal{A} is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon \mathcal{A}\to (\mathcal{B},\Theta)$ such that

- Θ satisfies the reduced interchange,
- ${\mathcal B}$ has strong $\Theta\text{-cokernels}$ and $\Theta\text{-strong}$ finite colimits,
- \mathcal{F} preserves finite colimits

This means that, for any \mathcal{F} as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal{F}}$: $(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}) \to (\mathcal{B}, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal{F}} \simeq \mathcal{F}$

Main result : If \mathcal{A} is a category with finite colimits, then the embedding

 $\Gamma\colon \mathcal{A} \longrightarrow (\text{Arr}(\mathcal{A}), \Theta_{\Delta})$

is universal among the functors $\mathcal{F}\colon \mathcal{A}\to (\mathcal{B},\Theta)$ such that

- Θ satisfies the reduced interchange,
- ${\mathcal B}$ has strong $\Theta\text{-cokernels}$ and $\Theta\text{-strong}$ finite colimits,
- \mathcal{F} preserves finite colimits

This means that, for any \mathcal{F} as above, there exists an essentially unique morphism of categories with nullhomotopies $\widehat{\mathcal{F}}$: $(\operatorname{Arr}(\mathcal{A}), \Theta_{\Delta}) \to (\mathcal{B}, \Theta)$ which preserves Θ -cokernels and finite colimits and such that $\Gamma \cdot \widehat{\mathcal{F}} \simeq \mathcal{F}$

Forthcoming Episode

In the forthcoming Episode 4, with Dupont we will show that, if ${\cal A}$ is an abelian category, then the bicategory of fractions

 $\text{Arr}(\mathcal{A})[\Sigma^{-1}]$

is a 2-abelian bicategory.

Here Σ is a class of arrows obtained by intersection from two factorization systems constructed in Arr(A) using Θ_{Δ} -kernels and Θ_{Δ} -cokernels.

See you in Palermo for PSSL 108 in September !

In the forthcoming Episode 4, with Dupont we will show that, if ${\cal A}$ is an abelian category, then the bicategory of fractions

$\text{Arr}(\mathcal{A})[\Sigma^{-1}]$

is a 2-abelian bicategory.

Here Σ is a class of arrows obtained by intersection from two factorization systems constructed in Arr(A) using Θ_{Δ} -kernels and Θ_{Δ} -cokernels.

See you in Palermo for PSSL 108 in September

In the forthcoming Episode 4, with Dupont we will show that, if ${\cal A}$ is an abelian category, then the bicategory of fractions

$$\operatorname{Arr}(\mathcal{A})[\Sigma^{-1}]$$

is a 2-abelian bicategory.

Here Σ is a class of arrows obtained by intersection from two factorization systems constructed in Arr(A) using Θ_{Δ} -kernels and Θ_{Δ} -cokernels.

See you in Palermo for PSSL 108 in September !