Protoadditive Functors and Pretorsion Theories in a Multipointed Context

Andrea Cappelletti

Università degli Studi di Milano ItaCa Fest June 16th, 2023 Joint Work with Andrea Montoli

Framework and Preliminaries

Assumptions

We assume to work in a Barr-exact and protomodular category \mathbb{C} with finite coproducts. We define \mathcal{Z} as the full replete subcategory whose objects are (modulo isomorphisms) the initial object **2** and the terminal object **1**. We denote the class of arrows of \mathbb{C} factorizing through an object of \mathcal{Z} as $N_{\mathcal{Z}}$.

Moreover, we require:

- a) $\mathbf{2} \neq \mathbf{1};$
- b) for every object $A \neq \mathbf{1}$, the unique arrow $\iota_A \colon \mathbf{2} \to A$ is a monomorphism;
- c) for every object A, if there exists an arrow $e: \mathbf{1} \to A$ then $A = \mathbf{1}$ and $e = id_1$.

Examples

Examples

Categories satisfying these assumptions include the category Boole of Boolean algebras, the category \mathbb{MV} of MV-algebras, the category $\mathbb{H}\text{eyt}$ of Heyting algebras, and the category $\mathbb{S}\text{et}^{\text{op}}$.

For an elementary topos \mathbb{E} . TFAE:

- i) for every object $A \neq 2$, the unique arrow $\tau_A \colon A \to 1$ is an epimorphism;
- ii) \mathbb{E} is two-valued (i.e. Sub(1) has exactly two elements).

Example

Every category of the form \mathbb{E}^{op} , where \mathbb{E} is a two-valued elementary topos.

\mathcal{Z} -prekernels and \mathcal{Z} -precokernels

Definition (Facchini, Finocchiaro¹)

Let $f: A \to B$ be a morphism in \mathbb{C} . We say that a morphism $k: K \to A$ in \mathbb{C} is a \mathcal{Z} -prekernel of f if:

- $fk \in N_{\mathcal{Z}}$;
- if $fe \in N_{\mathcal{Z}}$, then there exists a unique morphism φ in \mathbb{C} such that $k\varphi = e$.

In our case, the prekernel of $f: A \rightarrow B$, if $B \neq 1$, is given by:

The prekernel of $\tau_A \colon A \to \mathbf{1}$ is id_A .

5/24

¹Pretorsion theories, stable category and preordered sets, Annali di Matematica Pura ed Applicata.

\mathcal{Z} -prekernels and \mathcal{Z} -precokernels

Dually, we have the definition of \mathcal{Z} -precokernel.

Not every arrow admits a \mathcal{Z} -precokernel: if the two projections $\pi_1, \pi_2: 2 \times 2 \rightarrow 2$ are not equal (or, equivalently, 2×2 is not isomorphic to 2) the arrow $id_{2 \times 2}: 2 \times 2 \rightarrow 2 \times 2$ does not admit a \mathcal{Z} -precokernel.

If the \mathcal{Z} -precokernel of f exists, then it is given by a pushout of the form:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \chi \downarrow & & \downarrow^{q} \\ Z & \stackrel{\Gamma}{\longrightarrow} & Q, \end{array}$$

where Z is an object of \mathcal{Z} and it depends on f.

Pretorsion Theories

Consider $f: A \to B$ and $g: B \to C$ in \mathbb{C} . We say that

$$A \xrightarrow{f} B \xrightarrow{g} C$$

is a *short* Z*-pre-exact sequence* in \mathbb{C} if f is a Z*-*prekernel of g and g is a Z*-*precokernel of f.

Definition (Facchini, Finocchiaro, Gran²)

A pretorsion theory $(\mathcal{T}, \mathcal{F})$ in a category \mathbb{C} consists of two full, replete subcategories \mathcal{T}, \mathcal{F} of \mathbb{C} satisfying the following two conditions. Set $\mathcal{Z} = \mathcal{T} \cap \mathcal{F}$:

- $\operatorname{Hom}_{\mathbb{C}}(T,F) \subseteq N_{\mathcal{Z}}$ for every object $T \in \mathcal{T}$, $F \in \mathcal{F}$;
- for every object A of $\mathbb C$ there is a short $\mathcal Z$ -pre-exact sequence

$$T(A) \xrightarrow{\varepsilon_A} A \xrightarrow{\eta_A} F(A)$$

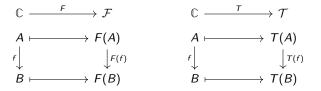
with $T(A) \in \mathcal{T}$ and $F(A) \in \mathcal{F}$. This \mathcal{Z} -pre-exact sequence is unique up to isomorphisms.

Andrea Cappelletti

²Pretorsion theories in general categories, Journal of Pure and Applied Algebra.

Pretorsion Theories

Every pretorsion theory defines two functors:



where T(f) and F(f) are determined by the universal properties of Z-prekernel and Z-precokernel.

Moreover:

- the functor $F : \mathbb{C} \to \mathcal{F}$ is a left inverse left adjoint of the inclusion functor $i_{\mathcal{F}} : \mathcal{F} \hookrightarrow \mathbb{C}$ and the unit is given by η ;
- the functor $T: \mathbb{C} \to T$ is a left inverse right adjoint of the inclusion functor $i_T: T \hookrightarrow \mathbb{C}$ and the counit is given by ε .

Admissible Galois Structures

Definition (Janelidze³)

A Galois structure consists in an adjunction $S \dashv C \colon \mathbb{P} \to \mathbb{A}$ and two admissible classes $\mathcal{A} \subseteq \mathbb{A}, \mathcal{P} \subseteq \mathbb{P}$ of arrows, such that

- $S(\mathcal{A}) \subseteq \mathcal{P}$ and $C(\mathcal{P}) \subseteq \mathcal{A}$,
- for every object A of \mathbb{A} the component η_A of the unit of the adjunction $S \dashv C$ is in \mathcal{A} and for every object X of \mathbb{P} the component ε_X of the counit of the adjunction $S \dashv C$ is in \mathcal{P} .

We define the functors: $S_A: A \to P/S(A)$ and $C_A: P/S(A) \to A/A$. One has $S_A(f: B \to A) = S(f)$ and $C_A(g: P \to S(A)) = \pi_A$ where π_A is the pullback of C(g) along η_A . S_A is the left adjoint of C_A .

Definition (Janelidze³)

A Galois structure (S, C, A, P) is *admissible* when the functor C_A is full and faithful for every object A of A.

³Pure Galois theory in categories, Journal of Algebra.

Andrea Cappelletti

Protoadditive Functors and Pretorsion Theories in a Multipointed Context

Admissible Galois Structures

In a Barr-exact category we have:

Definition (Janelidze³)

Given an admissible Galois structure (S, C, A, P), an arrow f of A is

• a trivial extension if that the square

$$\begin{array}{ccc} A \xrightarrow{\eta_A} PS(A) \\ \downarrow^{f} & \downarrow^{PS(f)} \\ B \xrightarrow{\eta_B} PS(B) \end{array}$$

is a pullback (where η is the unit of the adjunction $S \dashv P$);

- a *normal extension* if it is a regular epimorphism and its kernel pair projections are trivial extensions;
- a central extension if there exists a regular epimorphism g such that the pullback $g^*(f)$ is a trivial extension.

Factorization Systems

Definition

A factorization system for a category \mathbb{C} is a pair of classes of arrows $(\mathcal{E}, \mathcal{M})$ such that:

 $\bullet\,$ for every commutative square in $\mathbb C$ of the form

$$\begin{array}{c} A \xrightarrow{e \in \mathcal{E}} B \\ g \downarrow & \swarrow & \downarrow^{r} \\ C \xrightarrow{\downarrow^{r}} \exists ! d \\ m \in \mathcal{M} \end{array} D$$

there exists a unique arrow $d: B \rightarrow C$ such that de = g and md = h;

• every arrow f in \mathbb{C} factors as f = me, where $m \in \mathcal{M}$ and $e \in \mathcal{E}$.

A factorization system $(\mathcal{E}, \mathcal{M})$ is *stable* if \mathcal{E} is pullback stable.

Pretorsion Theories, Galois Structures and Factorization Systems

Conditions on the Pretorsion Theories

The following part is strongly inspired by the results obtained by Everaert and Gran⁴.

Definition

A functor F between protomodular categories that have both a terminal and an initial object is *protoadditive* if it preserves the terminal object, the initial object, and pullbacks along split epimorphisms.

A pretorsion theory $(\mathcal{T}, \mathcal{F})$ satisfies condition (P) if the reflector F is protoadditive (in our sense).

A pretorsion theory $(\mathcal{T},\mathcal{F})$ satisfies condition (N) if for every diagram

$$T(K[f]) \xrightarrow{\varepsilon_{K[f]}} K[f] \xrightarrow{k} A \xrightarrow{f} B,$$

where $k = \operatorname{preker}(f)$, $k \varepsilon_{K[f]}$ is the prekernel of some arrow.

⁴Protoadditive functors, derived torsion theories and homology, Journal of Pure and Applied Algebra.

Andrea Cappelletti

Conditions on the Torsion Objects T s.t. F(T) = 1

A pretorsion theory satisfies condition (C1) if, for every $A, T \in \mathbb{C}$,

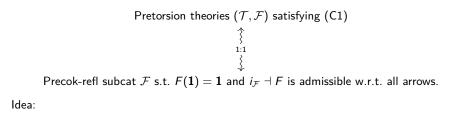
$$F(T) = \mathbf{1}$$
 implies $F(A \times T) \cong F(A)$.

A pretorsion theory satisfies condition (C2) if, whenever F(T) = 1 and $A \neq 1$, the sequence

$$\mathbf{2} \times T \xrightarrow{\iota_A \times id_T} A \times T \xrightarrow{\pi_A} A$$

is pre-exact and $\mathbf{2} \times T \in \mathcal{T}$.

Pretorsion Theories and Galois Structures



$$\mathcal{T} := \{ T \in \mathbb{C} \mid T = K[\eta_X] \text{ for } X \in \mathbb{C} \}.$$

Normal and Central Extensions

Moreover, if $(\mathcal{T},\mathcal{F})$ satisfies condition (P) we have a useful characterization of central extensions.

Theorem

Consider a pretorsion theory $(\mathcal{T}, \mathcal{F})$ satisfying conditions (P) and (C1). Suppose f is a regular epimorphism, and let $\Gamma_{\mathcal{F}}$ be the Galois structure associated with the reflector F. Then, the following conditions are equivalent:

- f is a normal extension for $\Gamma_{\mathcal{F}}$;
- f is a central extension for Γ_F;
- $K[f] \in \mathcal{F}$.

Pretorsion Theories and Factorization System

Pretorsion theories
$$(\mathcal{T}, \mathcal{F})$$
 satisfying (N) and (C2)
 \uparrow
 \uparrow
 \uparrow
 \downarrow
Stable factorization systems $(\mathcal{E}, \mathcal{M})$ s.t. \mathcal{E} are precokernels and $\mathbf{2} \rightarrow \mathbf{1} \in \mathcal{M}$.

$$\mathcal{E} := \{ e \text{ precokernel } | K[e] \in \mathcal{T} \} \text{ and } \mathcal{M} := \{ m | K[m] \in \mathcal{F} \}; \\ \mathcal{T} := \{ T \in \mathbb{C} | \exists t \colon T \to \mathbf{2}, t \in \mathcal{E} \} \cup \{ T \in \mathbb{C} | \tau_T \in \mathcal{E} \} \text{ and } \mathcal{F} := \{ F \in \mathbb{C} | \tau_F \in \mathcal{M} \}.$$

Idea:

Examples

Andrea Cappelletti

Protoadditive Functors and Pretorsion Theories in a Multipointed Context

16/06/2023

Semisimple MV-Algebras

An MV-algebra $(A, \oplus, 0, \neg)$ is a commutative monoid, such that $\neg \neg x = x$, $x \oplus \neg 0 = \neg 0$, and $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

The *radical* of A, denoted with Rad(A), is defined as the intersection of all maximal ideals of A.

An MV-algebra A is semisimple if its radical is trivial (i.e. $Rad(A) = \{0\}$).

Proposition

The full subcategory of semisimple MV-algebras $s\mathbb{MV}$ is reflective in $\mathbb{MV}.$ The reflector is given by

 $S(A) \coloneqq A / \operatorname{Rad}(A).$

The reflection above defines the pretorsion theory $(p\mathbb{MV}, s\mathbb{MV})$, where $p\mathbb{MV}$ denotes the full subcategory of \mathbb{MV} of perfect MV-algebras; an MV-algebra *A* is said to be *perfect* if $A = \operatorname{Rad}(A) \cup \neg \operatorname{Rad}(A)$.

19/24

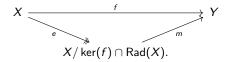
Semisimple MV-Algebras

Proposition

 $(p\mathbb{MV}, s\mathbb{MV})$ satisfies conditions (P), (N), (C1), and (C2).

The associated factorization system is given by

 $\mathcal{E} := \{e \colon A \to B \in \operatorname{Arr}(\mathbb{MV}) \mid e \text{ is surjective and } \ker(e) \subseteq \operatorname{Rad}(A)\} \text{ and} \\ \mathcal{M} := \{m \colon A \to B \in \operatorname{Arr}(\mathbb{MV}) \mid \ker(m) \cap \operatorname{Rad}(A) = \{0\}\}.$



A regular epimorphism s is central for the structure $\Gamma_{s \in \mathbb{N}}$ if and only if $K[s] = \ker(s) \cup \neg \ker(s)$ is a semisimple MV-algebra.

Double Negation in Heyting Algebras

Given a Heyting algebra H, let $H_{\neg\neg}$ denote the set of regular elements of H. An element $x \in H$ is said to be *regular* if $\neg \neg x = x$. It is a known fact that $(H_{\neg\neg}, \lor_{\neg\neg}, \land, 0, 1, \Rightarrow)$ is a Boolean algebra, where $x \lor_{\neg\neg} y := \neg(\neg x \land \neg y)$.

Proposition

The full subcategory Boole is reflective in Heyt. The reflector is given by

 $F(H) := H_{\neg \neg}.$

The reflection above defines the pretorsion theory (\mathbb{PD} , $\mathbb{B}oole$), where \mathbb{PD} denotes the full subcategory of \mathbb{H} eyt of pseudo-deterministic Heyting algebras; a Heyting algebras H is said to be *pseudo-deterministic* if $\neg x = 1$ or $\neg x = 0$ for every $x \in H$.

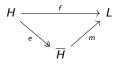
Double Negation in Heyting Algebras

Proposition

 $(\mathbb{PD}, \mathbb{B}oole)$ satisfies conditions (P), (N), (C1), and (C2).

The associated factorization system is given by

 $\mathcal{E} := \{ e \in \mathsf{Arr}(\mathbb{H}\mathsf{eyt}) \mid e \text{ is a precokernel and } \mathcal{K}[e] \in \mathbb{PD} \} \text{ and} \\ \mathcal{M} := \{ m \in \mathsf{Arr}(\mathbb{H}\mathsf{eyt}) \mid \mathcal{K}[m] \in \mathbb{B}\mathsf{oole} \}$



where $\overline{H} \coloneqq H/(\mathsf{Eq}(f) \cap \mathsf{Eq}(\eta_H))$.

A regular epimorphism s is central for the structure Γ_{Boole} if and only if K[s] is a Boolean algebra.

Andrea Cappelletti

MSet and Fix Points

For every monoid M, the category MSet of set with a fixed action of M is a two-valued elementary topos. Given an object X of MSet, we define the set of fix points $Fix(X) := \{x \in X \mid mx = x \text{ for every } m \in M\}.$

We define two full subcategories of MSet whose objects are

 $\mathcal{F} := \{X \in \mathsf{MSet} \mid \mathsf{Fix}(X) = X\} \text{ and } \mathcal{T} := \{X \in \mathsf{MSet} \mid | \mathsf{Fix}(X)| \le 1\}.$

Proposition

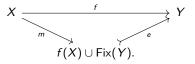
The pretorsion theory $(\mathcal{T}, \mathcal{F})$ in MSet^{op} satisfies conditions (P), (N), (C1), and (C2).

MSet and Fix Points

We describe the associated factorization system and the central extensions in terms of arrows of MSet.

The associated factorization system is given by

$$\mathcal{E} := \{e \colon A \to B \in \operatorname{Arr}(\mathsf{MSet}) \mid e \text{ is a prekernel and } B/e(A) \in \mathcal{T}\} \text{ and} \\ \mathcal{M} := \{m \colon A \to B \in \operatorname{Arr}(\mathsf{MSet}) \mid B/m(A) \in \mathcal{F}\}$$



A monomorphism $f: X \to Y$ is a central extension for the structure $\Gamma_{\mathcal{F}}$ if and only if $Y/f(X) \in \mathcal{F}$ (or, equivalently, if $Y = Fix(Y) \cup f(X)$).

Bibliography

T. Everaert and M. Gran.

Protoadditive functors, derived torsion theories and homology. Journal of Pure and Applied Algebra, 219(8):3629–3676, 2015.

A. Facchini and C. A. Finocchiaro.

Pretorsion theories, stable category and preordered sets. Annali di Matematica Pura ed Applicata (1923-), 199(3):1073–1089, 2020.

A. Facchini, C. A. Finocchiaro, and M. Gran. Pretorsion theories in general categories. Journal of Pure and Applied Algebra, 225(2):106503, 2021.

G. Janelidze.

Pure Galois theory in categories. Journal of Algebra, 132(2):270–286, 1990.

25/24

Thank You for Your Attention!