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Assumptions

We assume to work in a Barr-exact and protomodular category C with finite coproducts.
We define Z as the full replete subcategory whose objects are (modulo isomorphisms) the
initial object 2 and the terminal object 1. We denote the class of arrows of C factorizing
through an object of Z as NZ .

Moreover, we require:
a) 2 ̸= 1;
b) for every object A ̸= 1, the unique arrow ιA : 2 → A is a monomorphism;
c) for every object A, if there exists an arrow e : 1 → A then A = 1 and e = id1.
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Examples

Examples
Categories satisfying these assumptions include the category Boole of Boolean algebras,
the category MV of MV-algebras, the category Heyt of Heyting algebras, and the
category Setop.

For an elementary topos E. TFAE:
i) for every object A ̸= 2, the unique arrow τA : A → 1 is an epimorphism;
ii) E is two-valued (i.e. Sub(1) has exactly two elements).

Example
Every category of the form Eop , where E is a two-valued elementary topos.
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Z-prekernels and Z-precokernels

Definition (Facchini, Finocchiaro1)
Let f : A → B be a morphism in C. We say that a morphism k : K → A in C is a
Z-prekernel of f if:

• fk ∈ NZ ;
• if fe ∈ NZ , then there exists a unique morphism φ in C such that kφ = e.

In our case, the prekernel of f : A → B, if B ̸= 1, is given by:

K [f ] 2

A B.

ιB

f

k

g

⌟

The prekernel of τA : A → 1 is idA.

1Pretorsion theories, stable category and preordered sets, Annali di Matematica Pura ed Applicata.
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Z-prekernels and Z-precokernels

Dually, we have the definition of Z-precokernel.

Not every arrow admits a Z-precokernel: if the two projections π1, π2 : 2 × 2 → 2 are not
equal (or, equivalently, 2 × 2 is not isomorphic to 2) the arrow id2 × 2 : 2 × 2 → 2 × 2
does not admit a Z-precokernel.

If the Z-precokernel of f exists, then it is given by a pushout of the form:

A B

Z Q,

f

qχ

⌟

where Z is an object of Z and it depends on f .
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Pretorsion Theories

Consider f : A → B and g : B → C in C. We say that

A B Cf g

is a short Z-pre-exact sequence in C if f is a Z-prekernel of g and g is a Z-precokernel
of f .

Definition (Facchini, Finocchiaro, Gran2)
A pretorsion theory (T , F) in a category C consists of two full, replete subcategories
T , F of C satisfying the following two conditions. Set Z = T ∩ F :

• HomC(T , F ) ⊆ NZ for every object T ∈ T , F ∈ F ;
• for every object A of C there is a short Z-pre-exact sequence

T (A) A F (A)εA ηA

with T (A) ∈ T and F (A) ∈ F . This Z-pre-exact sequence is unique up to
isomorphisms.

2Pretorsion theories in general categories, Journal of Pure and Applied Algebra.
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Pretorsion Theories

Every pretorsion theory defines two functors:

C F C T

A F (A) A T (A)

B F (B) B T (B)

F

f F (f )

T

f T (f )

where T (f ) and F (f ) are determined by the universal properties of Z-prekernel and
Z-precokernel.
Moreover:

• the functor F : C → F is a left inverse left adjoint of the inclusion functor
iF : F ↪→ C and the unit is given by η;

• the functor T : C → T is a left inverse right adjoint of the inclusion functor
iT : T ↪→ C and the counit is given by ε.
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Admissible Galois Structures

Definition (Janelidze3)
A Galois structure consists in an adjunction S ⊣ C : P → A and two admissible classes
A ⊆ A, P ⊆ P of arrows, such that

• S(A) ⊆ P and C(P) ⊆ A,
• for every object A of A the component ηA of the unit of the adjunction S ⊣ C is in

A and for every object X of P the component εX of the counit of the adjunction
S ⊣ C is in P.

We define the functors: SA : A/A → P/S(A) and CA : P/S(A) → A/A. One has
SA(f : B → A) = S(f ) and CA(g : P → S(A)) = πA where πA is the pullback of C(g)
along ηA. SA is the left adjoint of CA.

Definition (Janelidze3)
A Galois structure (S, C , A, P) is admissible when the functor CA is full and faithful for
every object A of A.

3Pure Galois theory in categories, Journal of Algebra.
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Admissible Galois Structures

In a Barr-exact category we have:

Definition (Janelidze3)
Given an admissible Galois structure (S, C , A, P), an arrow f of A is

• a trivial extension if that the square

A PS(A)

B PS(B)

f PS(f )

ηA

ηB

⌟

is a pullback (where η is the unit of the adjunction S ⊣ P);
• a normal extension if it is a regular epimorphism and its kernel pair projections are

trivial extensions;
• a central extension if there exists a regular epimorphism g such that the pullback

g∗(f ) is a trivial extension.
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Factorization Systems

Definition
A factorization system for a category C is a pair of classes of arrows (E , M) such that:

• for every commutative square in C of the form

A B

C D

e∈E

m∈M

g h
∃!d

there exists a unique arrow d : B → C such that de = g and md = h;
• every arrow f in C factors as f = me, where m ∈ M and e ∈ E .

A factorization system (E , M) is stable if E is pullback stable.
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Pretorsion Theories, Galois Structures and Factorization Systems
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Conditions on the Pretorsion Theories

The following part is strongly inspired by the results obtained by Everaert and Gran4.

Definition
A functor F between protomodular categories that have both a terminal and an initial
object is protoadditive if it preserves the terminal object, the initial object, and pullbacks
along split epimorphisms.

A pretorsion theory (T , F) satisfies condition (P) if the reflector F is protoadditive (in
our sense).

A pretorsion theory (T , F) satisfies condition (N) if for every diagram

T (K [f ]) K [f ] A B,fkεK [f ]

where k = preker(f ), kεK [f ] is the prekernel of some arrow.

4Protoadditive functors, derived torsion theories and homology, Journal of Pure and Applied Algebra.
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Conditions on the Torsion Objects T s.t. F (T ) = 1

A pretorsion theory satisfies condition (C1) if, for every A, T ∈ C,

F (T ) = 1 implies F (A × T ) ∼= F (A).

A pretorsion theory satisfies condition (C2) if, whenever F (T ) = 1 and A ̸= 1, the
sequence

2 ×T ιA×idT−−−−→ A × T πA−→ A

is pre-exact and 2 ×T ∈ T .
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Pretorsion Theories and Galois Structures

Pretorsion theories (T , F) satisfying (C1)

Precok-refl subcat F s.t. F (1) = 1 and iF ⊣ F is admissible w.r.t. all arrows.

1:1

Idea:

T := {T ∈ C | T = K [ηX ] for X ∈ C}.

Andrea Cappelletti Protoadditive Functors and Pretorsion Theories in a Multipointed Context 16/06/2023 15/24



Framework and Preliminaries Pretorsion Theories, Galois Structures and Factorization Systems Examples

Normal and Central Extensions

Moreover, if (T , F) satisfies condition (P) we have a useful characterization of central
extensions.

Theorem
Consider a pretorsion theory (T , F) satisfying conditions (P) and (C1). Suppose f is a
regular epimorphism, and let ΓF be the Galois structure associated with the reflector F .
Then, the following conditions are equivalent:

• f is a normal extension for ΓF ;
• f is a central extension for ΓF ;
• K [f ] ∈ F .
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Pretorsion Theories and Factorization System

Pretorsion theories (T , F) satisfying (N) and (C2)

Stable factorization systems (E , M) s.t. E are precokernels and 2 → 1 ∈ M.

1:1

Idea:

E := {e precokernel | K [e] ∈ T } and M := {m | K [m] ∈ F};
T := {T ∈ C | ∃t : T → 2, t ∈ E} ∪ {T ∈ C | τT ∈ E} and F := {F ∈ C | τF ∈ M}.
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Examples

Andrea Cappelletti Protoadditive Functors and Pretorsion Theories in a Multipointed Context 16/06/2023 18/24



Framework and Preliminaries Pretorsion Theories, Galois Structures and Factorization Systems Examples

Semisimple MV-Algebras

An MV-algebra (A, ⊕, 0, ¬) is a commutative monoid, such that ¬¬x = x , x ⊕ ¬0 = ¬0,
and ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x .
The radical of A, denoted with Rad(A), is defined as the intersection of all maximal
ideals of A.
An MV-algebra A is semisimple if its radical is trivial (i.e. Rad(A) = {0}).

Proposition
The full subcategory of semisimple MV-algebras sMV is reflective in MV. The reflector is
given by

S(A) := A/ Rad(A).

The reflection above defines the pretorsion theory (pMV, sMV), where pMV denotes the
full subcategory of MV of perfect MV-algebras; an MV-algebra A is said to be perfect if
A = Rad(A) ∪ ¬ Rad(A).
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Semisimple MV-Algebras

Proposition
(pMV, sMV) satisfies conditions (P), (N), (C1), and (C2).

The associated factorization system is given by

E := {e : A → B ∈ Arr(MV) | e is surjective and ker(e) ⊆ Rad(A)} and
M := {m : A → B ∈ Arr(MV) | ker(m) ∩ Rad(A) = {0}}.

X Y

X/ ker(f ) ∩ Rad(X).

f

e m

A regular epimorphism s is central for the structure ΓsMV if and only if
K [s] = ker(s) ∪ ¬ ker(s) is a semisimple MV-algebra.
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Double Negation in Heyting Algebras

Given a Heyting algebra H, let H¬¬ denote the set of regular elements of H. An element
x ∈ H is said to be regular if ¬¬x = x . It is a known fact that (H¬¬, ∨¬¬, ∧, 0, 1, ⇒) is
a Boolean algebra, where x ∨¬¬ y := ¬(¬x ∧ ¬y).

Proposition
The full subcategory Boole is reflective in Heyt. The reflector is given by

F (H) := H¬¬.

The reflection above defines the pretorsion theory (PD, Boole), where PD denotes the full
subcategory of Heyt of pseudo-deterministic Heyting algebras; a Heyting algebras H is
said to be pseudo-deterministic if ¬x = 1 or ¬x = 0 for every x ∈ H.
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Double Negation in Heyting Algebras

Proposition
(PD, Boole) satisfies conditions (P), (N), (C1), and (C2).

The associated factorization system is given by

E := {e ∈ Arr(Heyt) | e is a precokernel and K [e] ∈ PD} and
M := {m ∈ Arr(Heyt) | K [m] ∈ Boole}

H L

H

f

e m

where H := H/(Eq(f ) ∩ Eq(ηH)).

A regular epimorphism s is central for the structure ΓBoole if and only if K [s] is a Boolean
algebra.
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MSet and Fix Points

For every monoid M, the category MSet of set with a fixed action of M is a two-valued
elementary topos. Given an object X of MSet, we define the set of fix points
Fix(X) := {x ∈ X | mx = x for every m ∈ M}.

We define two full subcategories of MSet whose objects are

F := {X ∈ MSet | Fix(X) = X} and T := {X ∈ MSet | | Fix(X)| ≤ 1}.

Proposition
The pretorsion theory (T , F) in MSetop satisfies conditions (P), (N), (C1), and (C2).
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MSet and Fix Points

We describe the associated factorization system and the central extensions in terms of
arrows of MSet.

The associated factorization system is given by

E := {e : A → B ∈ Arr(MSet) | e is a prekernel and B/e(A) ∈ T } and
M := {m : A → B ∈ Arr(MSet) | B/m(A) ∈ F}

X Y

f (X) ∪ Fix(Y ).

f

m e

A monomorphism f : X → Y is a central extension for the structure ΓF if and only if
Y /f (X) ∈ F (or, equivalently, if Y = Fix(Y ) ∪ f (X)).
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