Decidable objects and molecular toposes

Matías Menni

Conicet and Universidad Nacional de La Plata Argentina

May 2023

M.M. (Conicet & UNLP

Decidable objects and molecularity

May 2023

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible;

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the <u>existence</u> of isomorphisms in the first sense.

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the <u>existence</u> of isomorphisms in the first sense. While Cantor of course used the second abstraction too (as 'same cardinality'), he seems to have used the term Kardinale to denote a prior, more particular, abstraction in which

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the <u>existence</u> of isomorphisms in the first sense. While Cantor of course used the second abstraction too (as 'same cardinality'), he seems to have used the term <u>Kardinale</u> to denote a prior, more particular, abstraction in which an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."

F. W. Lawvere. Cohesive Toposes and Cantor's 'lauter Einsen'. Philos. Math., III. Ser. 2, No. 1, 5-15 (1994).

" an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."

'Spaces' 'zero-dimensional/discrete spaces'

and specific connections such as:

" an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."

'Spaces' 'zero-dimensional/discrete spaces'

and specific connections such as:

(Connected components)

A left adjoint ' π_0 ' with stable units (i.e. preserving finite products and 'well-behaved on fibers').

(Points) A colimit preserving right adjoint.

Let $TD \rightarrow Top$ be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_0 sends a space X to the t.d. space $\pi_0 X$ of connected components.

Theorem (Stable units)

Let $TD \rightarrow Top$ be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_0 sends a space X to the t.d. space $\pi_0 X$ of connected components.

Theorem (Stable units)

 π_0 : **Top** \rightarrow **TD** preserves pullbacks over t.d. spaces. In particular, π_0 preserves finite products.

(Note:

Let $TD \rightarrow Top$ be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_0 sends a space X to the t.d. space $\pi_0 X$ of connected components.

Theorem (Stable units)

 π_0 : **Top** \rightarrow **TD** preserves pullbacks over t.d. spaces. In particular, π_0 preserves finite products.

(Note: π_0 : **Top** \rightarrow **TD** preserves all small products.)

Totally-separated reflection

Let $TS \rightarrow Top$ be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory $\textbf{TS} \rightarrow \textbf{Top}$ is reflective.

Proof.

Proposition

The subcategory $\mathbf{TS} \rightarrow \mathbf{Top}$ is reflective.

Proof.

Let 2 be the discrete topological space with two points.

Proposition

The subcategory $\mathbf{TS} \rightarrow \mathbf{Top}$ is reflective.

Proof.

Let **2** be the discrete topological space with two points. Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_0 X \longrightarrow \prod_{\mathsf{Top}(X,2)} 2$ of the canonical map.

Proposition

```
The subcategory \mathbf{TS} \rightarrow \mathbf{Top} is reflective.
```

Proof.

Let **2** be the discrete topological space with two points.

Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_0 X \longrightarrow \prod_{\text{Top}(X,2)} 2$

of the canonical map.

Show that σ is universal from X to the inclusion **TS** \rightarrow **Top**.

Intuition: $\pi_0 X$ is the totally separated space of 'quasi-components'.

Proposition

```
The subcategory \mathbf{TS} \rightarrow \mathbf{Top} is reflective.
```

Proof.

Let **2** be the discrete topological space with two points.

Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_0 X \longrightarrow \prod_{\mathsf{Top}(X,2)} 2$

of the canonical map.

Show that σ is universal from X to the inclusion **TS** \rightarrow **Top**.

Intuition: $\pi_0 X$ is the totally separated space of 'quasi-components'. (Janelidze 2009):

Proposition

The subcategory $\mathbf{TS} \rightarrow \mathbf{Top}$ is reflective.

Proof.

Let **2** be the discrete topological space with two points.

Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_0 X \longrightarrow \prod_{\mathsf{Top}(X,2)} \mathbf{2}$

of the canonical map.

Show that σ is universal from X to the inclusion **TS** \rightarrow **Top**.

Intuition: $\pi_0 X$ is the totally separated space of 'quasi-components'.

(Janelidze 2009): π_0 : **Top** \rightarrow **TS** does not have stable units (is not even semi-left-exact).

Definition

A geometric morphism $p : \mathcal{E} \to \mathcal{S}$ is hyperconnected if $p^* : \mathcal{S} \to \mathcal{E}$ is fully faithful and the counit β of $p^* \dashv p_*$ is monic.

Intuition:

Definition

A geometric morphism $p : \mathcal{E} \to \mathcal{S}$ is hyperconnected if $p^* : \mathcal{S} \to \mathcal{E}$ is fully faithful and the counit β of $p^* \dashv p_*$ is monic.

Intuition: \mathcal{E} is a category of spaces, $p^*: S \to \mathcal{E}$ is the full subcategory of discrete spaces, p_*X is the set of points of X $\beta_X: p^*(p_*X) \to X$ is the discrete subspace of points of X.

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

- p* has a finite-product preserving left adjoint.

Proof.

Theorem (M. Tbilisi M. J. 2017)

- If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
 - **(**) $p^* : S \to \mathcal{E}$ is an exponential ideal.
 - p* has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in S, and let $\mathbf{2} = p^* 2$ in \mathcal{E} .

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

() $p^* : S \to \mathcal{E}$ is an exponential ideal.

p* has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in S, and let $\mathbf{2} = p^* 2$ in \mathcal{E} .

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

() $p^* : S \to \mathcal{E}$ is an exponential ideal.

p* has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in S, and let $\mathbf{2} = p^* 2$ in \mathcal{E} .

Cartesian p^* implies that $\pi_0 X$ is discrete and so $\dashv p^*$.

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

p* has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in S, and let $\mathbf{2} = p^* 2$ in \mathcal{E} .

Cartesian p^* implies that $\pi_0 X$ is discrete and so $\dashv p^*$. Exponential ideal implies π_0 preserves finite products.

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \to \mathcal{S}$ is hyperconnected then t.f.a.e.:

- **()** $p^* : S \to \mathcal{E}$ is an exponential ideal.
- p* has a finite-product preserving left adjoint.

Corollary

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \to \mathcal{S}$ is hyperconnected then t.f.a.e.:

- **2** *p*^{*} has a finite-product preserving left adjoint.

Corollary

If $p: \mathcal{E} \to \textbf{Set}$ is hyperconnected essential then $p_! = \pi_0 \dashv p_*$ has stable units.

Proof.

Because every essential g.m. over Set is molecular.

Notice!

Essentially the same proof but:

Essentially the same proof but:

() $\pi_0 \dashv (\mathbf{TS} \rightarrow \mathbf{Top})$ does not have stable units.

Essentially the same proof but:

- **(**) $\pi_0 \dashv (\mathbf{TS} \rightarrow \mathbf{Top})$ does not have stable units.
- **2** $p: \mathcal{E} \to \mathbf{Set}$ hyperconnected with p^* exponential ideal, $\pi_0 \dashv p^*$ has stable units.

Recall: an object X in an extensive category is decidable if the diagonal $\Delta: X \to X \times X$ is complemented.

Recall: an object X in an extensive category is decidable if the diagonal $\Delta: X \to X \times X$ is complemented.

Proposition [M'2022]

Let \mathcal{E} and \mathcal{S} be extensive with finite products, and let $\Psi : \mathcal{E} \to \mathcal{S}$ be a finite-coproduct preserving. Then Ψ preserves finite products if and only if it preserves pullbacks over decidable objects.

Proof

For the non trivial direction assume that the square on the left

is a p.b. in \mathcal{E} with decidable S. I.e. the right square above is a p.b.

Proof

For the non trivial direction assume that the square on the left

is a p.b. in \mathcal{E} with decidable S. I.e. the right square above is a p.b. The diagonal of S is complemented so, as Ψ preserves finite coproducts it preserves the right p.b. above. Hence, if Ψ also preserves finite products then the square on the left below

is a p.b. in \mathcal{S} . That is, the square on the right above is a p.b..

Let $\ensuremath{\mathcal{E}}$ be extensive with finite products.

An object X in \mathcal{E} is decidable if the diagonal $\Delta : X \to X \times X$ is complemented.

Corollary

If $\mathrm{Dec}\mathcal{E}\to\mathcal{E}$ has a finite-product preserving left adjoint then the reflection has stable units.

Theorem (M'2022)

If S is a Boolean topos then, for every connected essential geometric morphism $p: \mathcal{E} \to S$ such that the leftmost adjoint p_1 preserves finite products, p is molecular and

Theorem (M'2022)

If S is a Boolean topos then, for every connected essential geometric morphism $p: \mathcal{E} \to S$ such that the leftmost adjoint p_1 preserves finite products, p is molecular and $p^*: S \to \mathcal{E}$ coincides with $\text{Dec}\mathcal{E} \to S$.

$$\begin{array}{c|c} & \mathcal{E} \\ p_! & \downarrow & p^* \\ p^* & \downarrow & p^* \\ & \downarrow & p_* \\ & Dec \mathcal{E} \end{array}$$

 $\pi_0 = p_!$ preserving finite products.

Definition

A hyperconnected $p: \mathcal{E} \to \mathcal{S}$ is pre-cohesive if $p^* \dashv p_*$ extends to a string of adjoints

$$p_! \dashv p^* \dashv p_* \dashv p^!$$

such that $p_! : \mathcal{E} \to \mathcal{S}$ preserves finite products.

Intuition: Components \dashv Discrete \dashv Points \dashv Codiscrete.

Proposition [Johnstone 2011]

A bounded geometric morphism $p : \mathcal{E} \to \mathbf{Set}$ is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \to \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...]

Proposition [Johnstone 2011]

A bounded geometric morphism $p : \mathcal{E} \to \mathbf{Set}$ is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \to \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...] For example, in a case \mathcal{E} of algebraic geometry wherein spaces of all dimensions exist, \mathcal{S} is usefully taken as a corresponding category of zero-dimensional spaces such as the Galois topos (of Barr-atomic sheaves on finite extensions of the ground field)". [L'07]

Proposition [Johnstone 2011]

A bounded geometric morphism $p : \mathcal{E} \to \mathbf{Set}$ is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.

"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \to \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...] For example, in a case \mathcal{E} of algebraic geometry wherein spaces of all dimensions exist, \mathcal{S} is usefully taken as a corresponding category of zero-dimensional spaces such as the Galois topos (of Barr-atomic sheaves on finite extensions of the ground field)". [L'07]

(Streicher) $\mathcal{S}^{(\Delta_1^{op})} \to \mathcal{S}$ is pre-cohesive.

If S is Boolean and $p: E \to S$ is pre-cohesive then p is molecular. (So it has stable units.) In this case,

If S is Boolean and $p: \mathcal{E} \to S$ is pre-cohesive then p is molecular. (So it has stable units.) In this case,

 $\textbf{0} \ p^*: \mathcal{S} \to \mathcal{E} \text{ is the full subcategory of decidable objects and }$

If S is Boolean and $p: \mathcal{E} \to S$ is pre-cohesive then p is molecular. (So it has stable units.)

In this case,

 $\textbf{0} \ p^*: \mathcal{S} \to \mathcal{E} \text{ is the full subcategory of decidable objects and }$

2 $p^!$: $S \to \mathcal{E}$ is the full subcategory of $\neg \neg$ -sheaves.

If S is Boolean and $p: \mathcal{E} \to S$ is pre-cohesive then p is molecular. (So it has stable units.) In this case

In this case,

2 $p^!$: $S \to \mathcal{E}$ is the full subcategory of $\neg \neg$ -sheaves.

We don't know.

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not l.c. (Not pre-cohesive because $p_{\rm l}$ does not preserve finite products.)

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not l.c. (Not pre-cohesive because p_1 does not preserve finite products.) (A different source of examples appear in [M. 2022].)

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not l.c. (Not pre-cohesive because p_1 does not preserve finite products.) (A different source of examples appear in [M. 2022].)

[Garner-Streicher TAC 2021] built an essential, local map whose inverse image is an exponential ideal that is not l.c. (Not pre-cohesive because it is not hyperconnected.)

If S is Boolean and $p: \mathcal{E} \to S$ is pre-cohesive then p is molecular. (So it has stable units.) In this case

In this case,

• $p^*: S \to \mathcal{E}$ is the full subcategory of decidable objects and

2 $p^!$: $S \to \mathcal{E}$ is the full subcategory of $\neg \neg$ -sheaves.

As observed in [Barr-Paré, JPAA 17, 1980]: every essential geometric morphism over **Set** is molecular. As observed in [Barr-Paré, JPAA 17, 1980]:

every essential geometric morphism over Set is molecular.

What are the toposes ${\mathcal S}$ such that every essential g.m. with codomain ${\mathcal S}$ is molecular?

As observed in [Barr-Paré, JPAA 17, 1980]:

every essential geometric morphism over Set is molecular.

What are the toposes ${\mathcal S}$ such that every essential g.m. with codomain ${\mathcal S}$ is molecular?

Theorem (Hemelaer 2022)

If X is T_1 then every essential g.m. with codomain ShX is molecular.

We don't know.

Lawvere, F. W.

Axiomatic Cohesion. TAC, 2007.

Menni, M.

The construction of π_0 in Axiomatic Cohesion. TMJ, 2017. Decidable objects and Molecular toposes. Rev.UMA.

Janelidze, G.

Light morphisms for generalized T_0 -reflections. Topology and its Applications 2009.

Hemelaer, J.

Some toposes over which essential implies locally connected. Cahiers, 2022.