Decidable objects and molecular toposes

Matías Menni
Conicet and Universidad Nacional de La Plata
Argentina

May 2023

Kardinale

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible;

Kardinale

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the existence of isomorphisms in the first sense.

Kardinale

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the existence of isomorphisms in the first sense. While Cantor of course used the second abstraction too (as 'same cardinality'), he seems to have used the term Kardinale to denote a prior, more particular, abstraction in which

Kardinale

"The word isomorphism has two kinds of meanings: First, in an actual category some maps in particular might be invertible; second, an equivalence relation among the objects is defined by the existence of isomorphisms in the first sense. While Cantor of course used the second abstraction too (as 'same cardinality'), he seems to have used the term Kardinale to denote a prior, more particular, abstraction in which an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."
F. W. Lawvere. Cohesive Toposes and Cantor's 'lauter Einsen'. Philos. Math., III. Ser. 2, No. 1, 5-15 (1994).

The extraction of zero-dimensional/discrete spaces

" an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."

and specific connections such as:

The extraction of zero-dimensional/discrete spaces

" an actual category of a more purified nature is extracted from a richer one, accompanied by specific connections between the two categories."

'Spaces'

'zero-dimensional/discrete spaces'
and specific connections such as:
(1) (Connected components)

A left adjoint ' π_{0} ' with stable units (i.e. preserving finite products and 'well-behaved on fibers').
(2) (Points) A colimit preserving right adjoint.

Totally disconnected spaces (extracted from Top)

Let TD \rightarrow Top be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_{0} sends a space X to the t.d. space $\pi_{0} X$ of connected components.

Theorem (Stable units)

Totally disconnected spaces (extracted from Top)

Let TD \rightarrow Top be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_{0} sends a space X to the t.d. space $\pi_{0} X$ of connected components.

Theorem (Stable units)

$\pi_{0}:$ Top \rightarrow TD preserves pullbacks over t.d. spaces. In particular, π_{0} preserves finite products.
(Note:

Totally disconnected spaces (extracted from Top)

Let TD \rightarrow Top be the full subcategory of totally disconnected topological spaces (only connected subsets are single points).

It is reflective. The left adjoint π_{0} sends a space X to the t.d. space $\pi_{0} X$ of connected components.

Theorem (Stable units)

$\pi_{0}:$ Top \rightarrow TD preserves pullbacks over t.d. spaces. In particular, π_{0} preserves finite products.
(Note: $\pi_{0}: \mathbf{T o p} \rightarrow$ TD preserves all small products.)

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.
Proof.

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.

Proof.

Let 2 be the discrete topological space with two points.

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.

Proof.

Let 2 be the discrete topological space with two points. Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_{0} X \longrightarrow \prod_{\operatorname{Top}(X, 2)}{ }^{2}$ of the canonical map.

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.

Proof.

Let 2 be the discrete topological space with two points. Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_{0} X \longrightarrow \prod_{\operatorname{Top}(X, 2)} \mathbf{2}$ of the canonical map. Show that σ is universal from X to the inclusion TS \rightarrow Top.

Intuition: $\pi_{0} X$ is the totally separated space of 'quasi-components'.

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.

Proof.

Let 2 be the discrete topological space with two points. Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_{0} X \longrightarrow \prod_{\operatorname{Top}(X, 2)} \mathbf{2}$ of the canonical map. Show that σ is universal from X to the inclusion TS \rightarrow Top.

Intuition: $\pi_{0} X$ is the totally separated space of 'quasi-components'.
(Janelidze 2009):

Totally-separated reflection

Let TS \rightarrow Top be the full subcategory of subobjects of totally separated (clopens separate) topological spaces.

Proposition

The subcategory TS \rightarrow Top is reflective.

Proof.

Let 2 be the discrete topological space with two points. Take the regular-epic/mono factorization $X \xrightarrow{\sigma} \pi_{0} X \longrightarrow \prod_{\operatorname{Top}(X, 2)}{ }^{2}$ of the canonical map. Show that σ is universal from X to the inclusion TS \rightarrow Top.

Intuition: $\pi_{0} X$ is the totally separated space of 'quasi-components'.
(Janelidze 2009): $\pi_{0}: \mathbf{T o p} \rightarrow \mathbf{T S}$ does not have stable units (is not even semi-left-exact).

Hyperconnected geometric morphisms

Definition

A geometric morphism $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected if $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is fully faithful and the counit β of $p^{*} \dashv p_{*}$ is monic.

Intuition:

Hyperconnected geometric morphisms

Definition

A geometric morphism $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected if $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is fully faithful and the counit β of $p^{*} \dashv p_{*}$ is monic.

Intuition: \mathcal{E} is a category of spaces,
$p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of discrete spaces,
$p_{*} X$ is the set of points of X
$\beta_{X}: p^{*}\left(p_{*} X\right) \rightarrow X$ is the discrete subspace of points of X.

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)
If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
(2) p^{*} has a finite-product preserving left adjoint.

Proof.

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
(2) p^{*} has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in \mathcal{S}, and let $\mathbf{2}=p^{*} 2$ in \mathcal{E}.

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
(2) p^{*} has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in \mathcal{S}, and let $\mathbf{2}=p^{*} 2$ in \mathcal{E}.

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
(2) p^{*} has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in \mathcal{S}, and let $\mathbf{2}=p^{*} 2$ in \mathcal{E}.

Cartesian p^{*} implies that $\pi_{0} X$ is discrete and so $\dashv p^{*}$.

The construction of π_{0} in Axiomactic Cohesion

Theorem (M. Tbilisi M. J. 2017)

If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
(2) p^{*} has a finite-product preserving left adjoint.

Proof.

Let 2 be the subobject classifier in \mathcal{S}, and let $\mathbf{2}=p^{*} 2$ in \mathcal{E}.

Cartesian p^{*} implies that $\pi_{0} X$ is discrete and so $\dashv p^{*}$. Exponential ideal implies π_{0} preserves finite products.

The construction of π_{0} in Axiomactic Cohesion (cont.)

Theorem (M. Tbilisi M. J. 2017)
 If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
 (1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
 (2) p^{*} has a finite-product preserving left adjoint.

Corollary

The construction of π_{0} in Axiomactic Cohesion (cont.)

Theorem (M. Tbilisi M. J. 2017)
 If $p: \mathcal{E} \rightarrow \mathcal{S}$ is hyperconnected then t.f.a.e.:
 (1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is an exponential ideal.
 (2) p^{*} has a finite-product preserving left adjoint.

Corollary

If $p: \mathcal{E} \rightarrow$ Set is hyperconnected essential then $p_{!}=\pi_{0} \dashv p_{*}$ has stable units.

Proof.

Because every essential g.m. over Set is molecular.

Notice!

TS \longrightarrow Top

Essentially the same proof but:

Notice!

TS \longrightarrow Top

Essentially the same proof but:
(1) $\pi_{0} \dashv$ (TS \rightarrow Top) does not have stable units.

Notice!

TS \longrightarrow Top

Essentially the same proof but:
(1) $\pi_{0} \dashv$ (TS \rightarrow Top) does not have stable units.
(2) $p: \mathcal{E} \rightarrow$ Set hyperconnected with p^{*} exponential ideal, $\pi_{0} \dashv p^{*}$ has stable units.

A very basic (new?) fact

Recall: an object X in an extensive category is decidable if the diagonal $\Delta: X \rightarrow X \times X$ is complemented.

A very basic (new?) fact

Recall: an object X in an extensive category is decidable if the diagonal $\Delta: X \rightarrow X \times X$ is complemented.

Proposition [M'2022]

Let \mathcal{E} and \mathcal{S} be extensive with finite products, and let $\Psi: \mathcal{E} \rightarrow \mathcal{S}$ be a finite-coproduct preserving. Then Ψ preserves finite products if and only if it preserves pullbacks over decidable objects.

Proof

For the non trivial direction assume that the square on the left

is a p.b. in \mathcal{E} with decidable S. I.e. the right square above is a p.b.

Proof

For the non trivial direction assume that the square on the left

is a p.b. in \mathcal{E} with decidable S. I.e. the right square above is a p.b.
The diagonal of S is complemented so, as Ψ preserves finite coproducts it preserves the right p.b. above. Hence, if Ψ also preserves finite products then the square on the left below

is a p.b. in \mathcal{S}. That is, the square on the right above is a p.b..

Stable units almost for free

Let \mathcal{E} be extensive with finite products.
An object X in \mathcal{E} is decidable if the diagonal $\Delta: X \rightarrow X \times X$ is complemented.

Corollary

If $\operatorname{Dec\mathcal {E}} \rightarrow \mathcal{E}$ has a finite-product preserving left adjoint then the reflection has stable units.

Stable units from product-preservation

Theorem (M'2022)

If \mathcal{S} is a Boolean topos then, for every connected essential geometric morphism $p: \mathcal{E} \rightarrow \mathcal{S}$ such that the leftmost adjoint p! preserves finite products, p is molecular and

Stable units from product-preservation

Theorem (M'2022)

If \mathcal{S} is a Boolean topos then, for every connected essential geometric morphism $p: \mathcal{E} \rightarrow \mathcal{S}$ such that the leftmost adjoint p! preserves finite products, p is molecular and $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ coincides with $\operatorname{Dec} \mathcal{E} \rightarrow \mathcal{S}$.

$$
p_{!} \left\lvert\, \begin{gathered}
\hat{\mathcal{E}} \\
\downarrow \\
\dashv p_{*}^{*} \\
\mid \\
\operatorname{Dec} \mathcal{E}
\end{gathered}\right.
$$

$\pi_{0}=p_{!}$preserving finite products.

Pre-cohesive geometric morphisms

Definition

A hyperconnected $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive if $p^{*} \dashv p_{*}$ extends to a string of adjoints

$$
p_{!} \dashv p^{*} \dashv p_{*} \dashv p^{!}
$$

such that $p_{!}: \mathcal{E} \rightarrow \mathcal{S}$ preserves finite products.

Intuition: Components \dashv Discrete \dashv Points \dashv Codiscrete

Examples

Proposition [Johnstone 2011]

A bounded geometric morphism $p: \mathcal{E} \rightarrow$ Set is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.
"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \rightarrow \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...]

Examples

Proposition [Johnstone 2011]

A bounded geometric morphism $p: \mathcal{E} \rightarrow$ Set is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.
"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \rightarrow \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...]
For example, in a case \mathcal{E} of algebraic geometry wherein spaces of all dimensions exist, \mathcal{S} is usefully taken as a corresponding category of zero-dimensional spaces such as the Galois topos (of Barr-atomic sheaves on finite extensions of the ground field)". [L'07]

Examples

Proposition [Johnstone 2011]

A bounded geometric morphism $p: \mathcal{E} \rightarrow$ Set is pre-cohesive iff \mathcal{E} has a connected and locally connected site of definition (\mathcal{C}, J) such that every object of \mathcal{C} has a point.
"The contrast of cohesion \mathcal{E} with non-cohesion \mathcal{S} can be expressed by geometric morphisms $p: \mathcal{E} \rightarrow \mathcal{S}$ but that contrast can be made relative, so that \mathcal{S} itself may be an 'arbitrary' topos.[...]
For example, in a case \mathcal{E} of algebraic geometry wherein spaces of all dimensions exist, \mathcal{S} is usefully taken as a corresponding category of zero-dimensional spaces such as the Galois topos (of Barr-atomic sheaves on finite extensions of the ground field)". [L'07]
(Streicher) $\mathcal{S}^{\left(\Delta_{1}{ }^{\circ P}\right)} \rightarrow \mathcal{S}$ is pre-cohesive.

Pre-cohesive maps over Boolean toposes are molecular

Corollary

If \mathcal{S} is Boolean and $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive then p is molecular. (So it has stable units.)
In this case,

Pre-cohesive maps over Boolean toposes are molecular

Corollary

If \mathcal{S} is Boolean and $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive then p is molecular. (So it has stable units.)
In this case,
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of decidable objects and

Pre-cohesive maps over Boolean toposes are molecular

Corollary

If \mathcal{S} is Boolean and $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive then p is molecular. (So it has stable units.)
In this case,
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of decidable objects and
(2) $p^{!}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of $\neg \neg$-sheaves.

Pre-cohesive maps over Boolean toposes are molecular

Corollary

If \mathcal{S} is Boolean and $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive then p is molecular.
(So it has stable units.)
In this case,
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of decidable objects and
(2) $p^{!}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of $\neg \neg$-sheaves.

Are pre-cohesive maps molecular?

We don't know.

Negative evidence

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not I.c.
(Not pre-cohesive because $p_{!}$does not preserve finite products.)

Negative evidence

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not I.c. (Not pre-cohesive because $p_{!}$does not preserve finite products.) (A different source of examples appear in [M. 2022].)

Negative evidence

[Hemelaer-Rogers ACS 2021] built an example of an essential, hyperconnected, local geometric map that is not I.c.
(Not pre-cohesive because $p_{!}$does not preserve finite products.) (A different source of examples appear in [M. 2022].)
[Garner-Streicher TAC 2021] built an essential, local map whose inverse image is an exponential ideal that is not I.c.
(Not pre-cohesive because it is not hyperconnected.)

Positive evidence

Corollary

If \mathcal{S} is Boolean and $p: \mathcal{E} \rightarrow \mathcal{S}$ is pre-cohesive then p is molecular. (So it has stable units.)
In this case,
(1) $p^{*}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of decidable objects and
(2) $p^{!}: \mathcal{S} \rightarrow \mathcal{E}$ is the full subcategory of $\neg \neg$-sheaves.

Positive evidence (cont.)

As observed in [Barr-Paré, JPAA 17, 1980]: every essential geometric morphism over Set is molecular.

Positive evidence (cont.)

As observed in [Barr-Paré, JPAA 17, 1980]: every essential geometric morphism over Set is molecular.

What are the toposes \mathcal{S} such that every essential g.m. with codomain \mathcal{S} is molecular?

Positive evidence (cont.)

As observed in [Barr-Paré, JPAA 17, 1980]: every essential geometric morphism over Set is molecular.

What are the toposes \mathcal{S} such that every essential g.m. with codomain \mathcal{S} is molecular?

Theorem (Hemelaer 2022)

If X is T_{1} then every essential g.m. with codomain $\operatorname{Sh} X$ is molecular.

Are pre-cohesive maps molecular?

We don't know.

Bibliography I

固 Lawvere，F．W．
Axiomatic Cohesion．TAC， 2007.
䍰 Menni，M．
The construction of π_{0} in Axiomatic Cohesion．TMJ， 2017.
Decidable objects and Molecular toposes．Rev．UMA．
圊 Janelidze，G．
Light morphisms for generalized T_{0}－reflections．Topology and its Applications 2009.

围 Hemelaer，J．
Some toposes over which essential implies locally connected．Cahiers， 2022.

