	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem

A Doctrinal View of Logic

Francesca Guffanti

Università degli Studi di Milano ItaCa Fest May 24th, 2023

Doctrines		Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
●000000	000	00000	000000

Doctrines

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0●00000	000	00000	

Definition

Doctrines

Let \mathbb{C} be a category with finite products and let **Pos** be the category of partially-ordered sets and monotone functions. A *doctrine* is a functor $P : \mathbb{C}^{\text{op}} \to \mathbf{Pos}.$

\mathbb{C}^{op} -	\xrightarrow{P} Pos
В	P(B)
f	$\bigvee P(f)$
A	P(A)

Examples

- (a) The functor 𝒫 : Set^{op} → Pos, sending each set in the poset of its subsets, ordered by inclusion, and each function f : A → B to the inverse image f⁻¹ : 𝒫(B) → 𝒫(A) is a doctrine.
- (b) For a given category C with finite limits, the functor Sub_C : C^{op} → Pos sending each object to the poset of its subobjects in C and each arrow f : X → Y to the pullback function f^{*} : Sub_C(Y) → Sub_C(X), is a doctrine.

Doctrines	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
000000		

Doctrines

Examples

(c) For a given theory T on a one-sorted first-order language L, define the category ℂtx_L of contexts: an object is a finite list of distinct variables and an arrow between two lists x = (x₁,...,x_n) and y = (y₁,...,y_m) is given by an *m*-tuple of terms in the context x:

$$(t_1(\vec{x}),\ldots,t_m(\vec{x})):(x_1,\ldots,x_n) \rightarrow (y_1,\ldots,y_m)$$

The functor $LT_{\mathcal{T}}^{\mathcal{L}}: \mathbb{C}tx_{\mathcal{L}}^{\mathrm{op}} \to \mathbf{Pos}$ sends each list \vec{y} of variables to the poset reflection of well-formed formulae ordered by provable consequence in \mathcal{T} .

4/23

Doctrines homomorphisms

Definition

A *doctrine homomorphism* between $P : \mathbb{C}^{\text{op}} \to \mathbf{Pos}$ and $R : \mathbb{D}^{\text{op}} \to \mathbf{Pos}$ is a pair (F, \mathfrak{f}) where $F : \mathbb{C} \to \mathbb{D}$ is a functor that preserves finite products and $\mathfrak{f} : P \to R \circ F^{\text{op}}$ is a natural transformation.

Additional structures

Definition

- (a) A primary doctrine P : C^{op} → Pos is a doctrine such that for each object A in C, the poset P(A) has finite meets, and the related operations ∧ : P × P → P and T : 1 → P yeld natural transformations.
- (b) is *implicational* if for any object A, the poset P(A) is cartesian closed, and the related operations $\land : P \times P \rightarrow P, \top : \mathbf{1} \rightarrow P, \rightarrow : P^{\mathrm{op}} \times P \rightarrow P$ yeld natural transformations;
- (c) is bounded if for any object A, the poset P(A) has a top and a bottom element, and the related operation, $\top : \mathbf{1} \rightarrow P$ and $\perp : \mathbf{1} \rightarrow P$ yeld natural transformations;
- (d) is *Boolean* if for any object *A*, the poset *P*(*A*) is a Boolean algebra, and the related operations $\land : P \times P \rightarrow P, \top : \mathbf{1} \rightarrow P, \rightarrow : P^{\text{op}} \times P \rightarrow P, \lor : P \times P \rightarrow P, \perp : \mathbf{1} \rightarrow P$ yeld natural transformations;

6/23

Doctrines	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000		

Additional structures

Definition

(e) A primary doctrine $P : \mathbb{C}^{\text{op}} \to \mathbf{Pos}$ is *existential* if for any pair of objects B, C of \mathbb{C} , the map $P(\text{pr}_1) : P(C) \to P(C \times B)$ has a left adjoint

$$\exists^B_C: P(C \times B) \rightarrow P(C),$$

which is natural in C; moreover, the adjunction $\exists_C^B \dashv P(pr_1)$ satisfies the Frobenius reciprocity, i.e. for any $\alpha \in P(C \times B)$ and $\beta \in P(C)$ the equality

$$\exists^{B}_{C}(\alpha \wedge P(\mathrm{pr}_{1})(\beta)) = \exists^{B}_{C}(\alpha) \wedge \beta$$

holds.

Definition

A doctrine homomorphism (F, \mathfrak{f}) is primary (resp. implicational, bounded, Boolean, existential) if \mathfrak{f} preserves the structure.

Additional structures: examples

Examples

(a) The doctrine $\mathscr{P}:\operatorname{Set}^{\operatorname{op}}\to\operatorname{\textbf{Pos}}$ is Boolean and existential.

$$\mathscr{P}(C \times B) \xrightarrow[\operatorname{pr_1}]{\perp} \mathscr{P}(C)$$

- (b) For a given category \mathbb{C} with finite limits, the doctrine $\operatorname{Sub}_{\mathbb{C}}: \mathbb{C}^{\operatorname{op}} \to \mathbf{Pos}$ is primary. If \mathbb{C} is regular, $\operatorname{Sub}_{\mathbb{C}}$ is existential.
- (c) The doctrine $LT_{\mathcal{T}}^{\mathcal{L}}: \mathbb{C}tx_{\mathcal{L}}^{^{\mathrm{op}}} \to \textbf{Pos}$ is Boolean and existential.

$$LT_{\mathcal{T}}^{\mathcal{L}}(\vec{x},\vec{y}) \xrightarrow{\exists_{y_1...\exists_{y_m}}} LT_{\mathcal{T}}^{\mathcal{L}}(\vec{x})$$

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	●00	00000	

Henkin's proof

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	0●0	00000	
Main goal			

Henkin's Theorem: L. Henkin, 1949¹

Let ${\mathcal T}$ be a theory in a first-order language ${\mathcal L}.$ If ${\mathcal T}$ is consistent, then ${\mathcal T}$ has a model.

Consistent theory ${\mathcal T}$ in a first-order language ${\mathcal L}$

Model of ${\mathcal T}$

Suitable doctrine $P: \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$

Suitable doctrine homomorphism from P to $\mathscr{R}:\operatorname{Set}^{\operatorname{op}}_*\to \textbf{Pos}$

¹Leon Henkin. *The completeness of the first-order functional calculus*, The Journal of Symbolic Logic.

Idea of the proof

Steps of Henkin's proof, adapted to doctrines:

Consistent first-order theory \mathcal{T} in the language \mathcal{L} .

- 1. Extend the language with a suitable amount of constants;
- 2. extend the theory with formulae of the kind $\exists x \varphi(x) \rightarrow \varphi(c)$;
- 3. show that consistency still holds;
- 4. define a model whose underlying set is given by the closed terms of the extended language.

P bounded existential implicational doctrine, with non-trivial fibers and with a small base category.

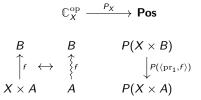
- 1.a Add a constant to the language;
- 1.b add a suitable amount of constants to the language;
- 2.a extend the theory with an axiom;
- 2.b extend the theory with formulae of the kind $\exists x \varphi(x) \rightarrow \varphi(c)$;
 - 3. show that consistency still holds;
 - define a model whose base functor is given by Hom(t, −).

000000 000 00000 000000			Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
	000000	000	●0000	000000

Adding a constant and an axiom to a doctrine

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000	○●○○○	

Let $P : \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$ be a doctrine and X be a fixed object in \mathbb{C} .

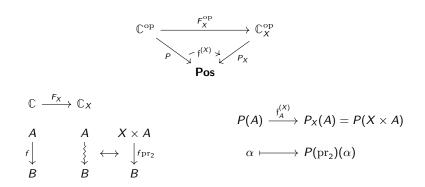


In particular, there exists $\mathbf{t} \rightsquigarrow X$ a arrow in \mathbb{C}_X , corresponding to $\mathrm{id}_X : X \to X$.

Adding a constant

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000	OO●OO	

Adding a constant



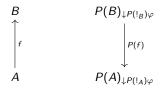
Remarks

- If the doctrine P is primary (resp. implicational, bounded, Boolean, existential), then also P_X and $(F, \mathfrak{f}^{(X)})$ are primary (implicational, bounded, Boolean, existential);
- $(F, \mathfrak{f}^{(X)})$ has a universal property.

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000	000●0	
Adding an	axiom		

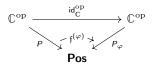
Let $P : \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$ be a primary doctrine and φ be a fixed element in $P(\mathbf{t})$.

 $\mathbb{C}^{\mathrm{op}} \xrightarrow{P_{\varphi}} \mathsf{Pos}$



	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
	00000	

Adding an axiom



$$P(A) \xrightarrow{\mathfrak{f}_A^{(\varphi)}} P_{\varphi}(A) = P(A)_{\downarrow P(!_A)\varphi}$$

$$\alpha \longmapsto \alpha \wedge P(!_A)\varphi$$

In particular, $f_{\mathbf{t}}^{(\varphi)}: \varphi \mapsto \varphi$, so that φ is sent to the top element of $P_{\varphi}(\mathbf{t})$.

Remarks

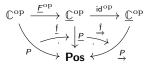
- The doctrine P_{φ} and the homomorphism $(F, \mathfrak{f}^{(\varphi)})$ are primary;
- if the doctrine P is implicational (resp. bounded, Boolean, existential), then also P_X and (F, f^(φ)) are implicational (bounded, Boolean, existential);
- $(F, \mathfrak{f}^{(\varphi)})$ has a universal property.

		Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000	00000	●000000

Rich doctrines and Henkin's Theorem

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000		○●○○○○○
Richness			

Let $P : \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$ be an implicational existential doctrine, with a small base category.



The doctrine \underline{P} has a suitable amount of added constants. In the doctrine \underline{P} suitable formulas of the kind $\exists x \varphi(x) \rightarrow \varphi(c)$ are made true. All additional structures are preserved.

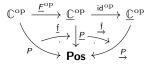
Definition

Let $R : \mathbb{D}^{^{\mathrm{op}}} \to \mathbf{Pos}$ be an existential doctrine. Then R is *rich* if for all $A \in \mathrm{ob}\mathbb{D}$ and for all $\sigma \in R(A)$ there exists a \mathbb{D} -arrow $d : \mathbf{t} \to A$ such that $\exists_{\mathbf{t}}^{A} \sigma \leq R(d)\sigma$.

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000		○●○○○○○

Richness

Let $P: \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$ be an implicational existential doctrine, with a small base category.



The doctrine <u>P</u> has a suitable amount of added constants. In the doctrine <u>P</u> suitable formulas of the kind $\exists x \varphi(x) \rightarrow \varphi(c)$ are made true. All additional structures are preserved.

Definition

Let $R : \mathbb{D}^{^{\mathrm{op}}} \to \mathbf{Pos}$ be an existential doctrine. Then R is *rich* if for all $A \in \mathrm{ob}\mathbb{D}$ and for all $\sigma \in R(A)$ there exists a \mathbb{D} -arrow $d : \mathbf{t} \to A$ such that $\exists_{\mathbf{t}}^{A} \sigma \leq R(d)\sigma$.

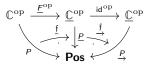
Example

The subsets doctrine $\mathscr{P}: \operatorname{Set}^{\operatorname{op}} \to \mathbf{Pos}$ is not rich, since there exists no arrow $\mathbf{t} \to \emptyset$. However, we can remove the empty set from the base category and consider the doctrine $\mathscr{P}_*: \operatorname{Set}^{\operatorname{op}}_* \to \mathbf{Pos}$, which is rich.

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000		○●○○○○○

Richness

Let $P : \mathbb{C}^{\text{op}} \to \mathbf{Pos}$ be an implicational existential doctrine, with a small base category.



The doctrine <u>P</u> has a suitable amount of added constants. In the doctrine <u>P</u> suitable formulas of the kind $\exists x \varphi(x) \rightarrow \varphi(c)$ are made true. All additional structures are preserved.

Definition

Let $R : \mathbb{D}^{^{\mathrm{op}}} \to \mathbf{Pos}$ be an existential doctrine. Then R is *rich* if for all $A \in \mathrm{ob}\mathbb{D}$ and for all $\sigma \in R(A)$ there exists a \mathbb{D} -arrow $d : \mathbf{t} \to A$ such that $\exists_{\mathbf{t}}^{A} \sigma \leq R(d)\sigma$.

- The doctrine homomorphism $(F, \mathfrak{f}) : P \to \underline{P}$ is implicational existential;
- \underline{P} is rich;
- (F, \mathfrak{f}) has a weak universal property.

	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
		000000

Consistency

Definition

A bounded doctrine *P* is *consistent* if $\top_t \leq \bot_t$ in *P*(**t**).

Proposition

Let $P : \mathbb{C}^{\mathrm{op}} \to \mathbf{Pos}$ be a bounded existential implicational doctrine such that each fiber is non-trivial, and the base category \mathbb{C} is small, then the doctrine \underline{P} is consistent.

Idea of the proof:

- Prove the Proposition above with Boolean instead of implicational;
- Use the weak universal property and the Boolean completion to prove the Proposition in the implicational setting.

Doctrines	Henkin's proof	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
0000000	000		000●000
Filters			

Definition

Let A be an inf-semilattice. A subset $\nabla \subseteq A$ is a *filter* if the following properties hold:

- $\top \in \nabla$;
- if $a \in \nabla$ and $a \leq b$, then $b \in \nabla$;
- if $a, b \in \nabla$, then $a \wedge b \in \nabla$.

A filter ∇ is proper if $\nabla \neq A$.

A filter ∇ is a *maximal filter* if it is maximal with respect to the inclusion, meaning that $\nabla \neq A$ and, whenever $\nabla \subsetneq \nabla'$ where ∇' is a filter, then $\nabla' = A$.

Lemma

Given a proper filter ∇ of a bounded implicative inf-semilattice A, there exists a maximal filter $U \supseteq \nabla$.

A model of a rich doctrine

Let $P : \mathbb{C}^{\text{op}} \to \mathbf{Pos}$ be a bounded consistent existential implicational rich doctrine. Let $\nabla \subseteq P(\mathbf{t})$ be a maximal filter and $P/\nabla : \mathbb{C}^{\text{op}} \to \mathbf{Pos}$ be the relative quotient doctrine.

We build a model of P/∇ in the doctrine $\mathscr{R} : \operatorname{Set}^{\operatorname{op}}_* \to \operatorname{Pos}$, i.e. a doctrine homomorphism $(\Gamma, \mathfrak{g}) : P/\nabla \to \mathscr{R}$, preserving the bounded existential implicational structure.

Define $\Gamma := \operatorname{Hom}_{\mathbb{C}}(\mathbf{t}, -) : \mathbb{C} \to \operatorname{Set}_*$. Then, for a given $X \in ob\mathbb{C}$, let $\mathfrak{g}_X : P/\nabla(X) \to \mathscr{R}(\operatorname{Hom}_{\mathbb{C}}(\mathbf{t}, X))$ be:

$$\mathfrak{g}_X[\varphi] = \{ c : \mathbf{t} \to X \mid P(c)\varphi \in \nabla \}.$$

Proposition

The pair $(\Gamma, \mathfrak{g}) : P/\nabla \to \mathscr{R}$ is a bounded **existential implicational** morphism.

Doctrines He	enkin's proof 🛛 🖌 🖉	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin
0000000 00	00 (00000	0000000

Henkin's theorem

Theorem

Let P be a bounded existential implicational doctrine, with non-trivial fibers and with a small base category. Then there exists a bounded existential implicational model of P in the doctrine of subsets $\mathscr{P}: \operatorname{Set}^{\operatorname{op}}_* \to \operatorname{Pos}$.

Proof. Thanks to the construction seen before, we get a morphism $(F, \mathfrak{f}) : P \to \underline{P}$ that preserves bounded implicational existential structure; moreover the doctrine \underline{P} is consistent and rich. So \underline{P} is a bounded, existential, implicational doctrine, rich and consistent, so that we can chose a maximal filter $\nabla \subseteq \underline{P}(\mathbf{t})$ and take the quotient over it. Hence define as before the model (Γ, \mathfrak{g}) of such quotient. The composition

$$P \xrightarrow{(F,\mathfrak{f})} \underline{P} \xrightarrow{(\mathrm{id}\,,\mathfrak{q})} \underline{P} / \nabla \xrightarrow{(\Gamma,\mathfrak{g})} \mathscr{P}_{*}$$

is a model of P, preserving all said structure.

n's Theorem

	Adding a constant and an axiom to a doctrine	Rich doctrines and Henkin's Theorem
		000000

Thank you for your attention!