What should Strong Vector Spaces be?

Pietro Freni
University of Leeds
ItaCa Fest, 24th May 2023

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.

$$
\mathbf{k}(\Gamma,\{\text { finite subsets of } \Gamma\}) \cong \mathbf{k}^{\oplus \Gamma}
$$

$\mathbf{k}(\Gamma, \mathcal{P}(\Gamma))=\mathbf{k}^{\Gamma}$

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.
$\mathbf{k}(\Gamma,\{$ finite subsets of $\Gamma\}) \cong \mathbf{k}^{\oplus \Gamma}$
$\mathbf{k}(\Gamma, \mathcal{P}(\Gamma))=\mathbf{k}^{\Gamma}$
$\mathbf{k}(\Gamma, \mathcal{P}(\Gamma))=\mathbf{k}^{\Gamma}$
$\Gamma \hookrightarrow \mathbf{k}(\Gamma, \mathcal{F})$, identify γ with $\delta_{\gamma}\left(\gamma^{\prime}\right)= \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\ 0 & \text { otherwise }\end{cases}$

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.
- $\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})$ is summable iff

$$
\forall \gamma \in \Gamma\left|\left\{i \in I: \gamma \in \operatorname{supp} x_{i}\right\}\right|<\aleph_{0}
$$

$$
\bigcup\left\{\operatorname{supp} x_{i}: i \in I\right\} \in \mathcal{F}
$$

in which case $\left(\sum_{i \in I} x_{i}\right)(\gamma)=\sum_{i \in I} x_{i}(\gamma)$.

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.
- $\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})$ is summable iff

$$
\begin{aligned}
& \forall \gamma \in \Gamma\left|\left\{i \in I: \gamma \in \operatorname{supp} x_{i}\right\}\right|<\aleph_{0} \\
& \bigcup\left\{\operatorname{supp} x_{i}: i \in I\right\} \in \mathcal{F} .
\end{aligned}
$$

in which case $\left(\sum_{i \in I} x_{i}\right)(\gamma)=\sum_{i \in I} x_{i}(\gamma)$.

- $f: \mathbf{k}(\Gamma, \mathcal{F}) \rightarrow \mathbf{k}(\Delta, \mathcal{G})$ linear, is strongly linear iff

$$
\forall\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I} \text { summable } \rightarrow\left\{\begin{array}{l}
\left(f x_{i}\right)_{i \in I} \in \mathbf{k}(\Delta, \mathcal{G})^{I} \text { summable } \\
\sum_{i \in I} f x_{i}=f \sum_{i \in I} x_{i}
\end{array}\right.
$$

Based strong vector spaces

\mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

- $\mathbf{k}(\Gamma, \mathcal{F}):=\left\{x \in \mathbf{k}^{\Gamma}: \operatorname{supp} x \in \mathcal{F}\right\}$.
- $\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})$ is summable iff

$$
\begin{aligned}
& \forall \gamma \in \Gamma\left|\left\{i \in I: \gamma \in \operatorname{supp} x_{i}\right\}\right|<\aleph_{0} \\
& \bigcup\left\{\operatorname{supp} x_{i}: i \in I\right\} \in \mathcal{F} .
\end{aligned}
$$

in which case $\left(\sum_{i \in I} x_{i}\right)(\gamma)=\sum_{i \in I} x_{i}(\gamma)$.

- $f: \mathbf{k}(\Gamma, \mathcal{F}) \rightarrow \mathbf{k}(\Delta, \mathcal{G})$ linear, is strongly linear iff

$$
\forall\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I} \text { summable } \rightarrow\left\{\begin{array}{l}
\left(f x_{i}\right)_{i \in I} \in \mathbf{k}(\Delta, \mathcal{G})^{I} \text { summable } \\
\sum_{i \in I} f x_{i}=f \sum_{i \in I} x_{i}
\end{array}\right.
$$

$B \Sigma$ Vect is the category whose objects are the $\mathbf{k}(\Gamma, \mathcal{F}) \mathbf{s}$ and whose arrows are strong linear maps between them.

Examples - why do we care

If $<$ is a total order on Γ and
$\mathcal{F} \subseteq W O(\Gamma,<)=\{S \subseteq \Gamma: S$ is well ordered $\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

$$
v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \rightarrow \Gamma \quad v(x)=\min \operatorname{supp} x
$$

Examples - why do we care

If $<$ is a total order on Γ and
$\mathcal{F} \subseteq W O(\Gamma,<)=\{S \subseteq \Gamma: S$ is well ordered $\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

$$
v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \rightarrow \Gamma \quad v(x)=\min \operatorname{supp} x
$$

Fact: $\mathbf{k}(\Gamma, W O(\Gamma))$ is isomorphic to the \mathcal{H}-injective hull of any $\left(V, v: V^{\neq 0} \rightarrow \Gamma\right)$ with 1-dimensional ribs, where \mathcal{H} is the class of immediate extensions of valued vector spaces.

Examples - why do we care

If $<$ is a total order on Γ and
$\mathcal{F} \subseteq W O(\Gamma,<)=\{S \subseteq \Gamma: S$ is well ordered $\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

$$
v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \rightarrow \Gamma \quad v(x)=\min \operatorname{supp} x
$$

Fact: $\mathbf{k}(\Gamma, W O(\Gamma))$ is isomorphic to the \mathcal{H}-injective hull of any ($V, v: V^{\neq 0} \rightarrow \Gamma$) with 1-dimensional ribs, where \mathcal{H} is the class of immediate extensions of valued vector spaces.
If $(\Gamma,<, \cdot) \in o A b$, then on $\mathbf{k}(\Gamma, W O(\Gamma))$ there is a unique product extending the product of Γ along $\gamma \mapsto \tilde{\gamma}:=\delta_{\gamma,-}$ which is strongly linear in both arguments.

Example 1

- if $\Gamma=x^{\mathbb{Z}}$, then $\mathbf{k}(\Gamma, W O(\Gamma))=\mathbf{k}((x))$.
- if $\Gamma=x^{\mathbb{Q}}$ and \mathcal{F} consists of the well ordered subsets generating a fin.gen. subgroup then $\mathbf{k}(\Gamma, \mathcal{F})$ is the field of Puiseux series.

Fixing an ugly definition

Fixing an ugly definition

$O b(B \operatorname{Vect})=\left\{\mathbf{k}^{\oplus I}: I \in \mathbf{S e t}\right\}, B \operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)=\operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)$.

Fixing an ugly definition

$O b(B \operatorname{Vect})=\left\{\mathbf{k}^{\oplus I}: I \in \mathbf{S e t}\right\}, B \operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)=\operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)$.

Proposition 1

The assignment below defines a k-additive functor $B \mathrm{Vect}^{\mathrm{op}} \rightarrow B \Sigma \mathrm{Vect}$ which is fully faithful.

$$
\begin{array}{ccc}
\mathbf{k}^{\oplus I} & & \mathbf{k}(I, \mathcal{P}(I))=\mathbf{k}^{I} \cong\left(\mathbf{k}^{\oplus I}\right)^{*} \\
\downarrow^{f} & \mapsto & f^{*} \mid \\
\mathbf{k}^{\oplus J} & & \mathbf{k}(J, \mathcal{P}(J))=\mathbf{k}^{J} \cong\left(\mathbf{k}^{\oplus J}\right)^{*}
\end{array}
$$

Fixing an ugly definition

$O b(B \operatorname{Vect})=\left\{\mathbf{k}^{\oplus I}: I \in \mathbf{S e t}\right\}, B \operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)=\operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)$.

Proposition 1

The assignment below defines a k-additive functor $B \mathrm{Vect}^{\mathrm{op}} \rightarrow B \Sigma \mathrm{Vect}$ which is fully faithful and dense.

$$
\begin{array}{ccc}
\mathbf{k}^{\oplus I} & & \mathbf{k}(I, \mathcal{P}(I))=\mathbf{k}^{I} \cong\left(\mathbf{k}^{\oplus I}\right)^{*} \\
\downarrow_{f} & \mapsto & f^{*} \mid \\
\mathbf{k}^{\oplus J} & & \mathbf{k}(J, \mathcal{P}(J))=\mathbf{k}^{J} \cong\left(\mathbf{k}^{\oplus J}\right)^{*}
\end{array}
$$

Remark: $\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I}$ is summable iff $x_{i}=f \delta_{i}$ for a (unique) s.l. $f: \mathbf{k}^{I} \rightarrow \mathbf{k}(\Gamma, \mathcal{F})$.

Fixing an ugly definition

$$
O b(B \operatorname{Vect})=\left\{\mathbf{k}^{\oplus I}: I \in \mathbf{S e t}\right\}, B \operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)=\operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}\right)
$$

Proposition 1

The assignment below defines a k-additive functor B Vect $^{\mathrm{op}} \rightarrow B \Sigma$ Vect which is fully faithful and dense.

$$
\begin{array}{rll}
\mathbf{k}^{\oplus I} & & \mathbf{k}(I, \mathcal{P}(I))=\mathbf{k}^{I} \cong\left(\mathbf{k}^{\oplus I}\right)^{*} \\
\downarrow^{f} & \mapsto & f^{*} \uparrow \\
\mathbf{k}^{\oplus J} & & \mathbf{k}(J, \mathcal{P}(J))=\mathbf{k}^{J} \cong\left(\mathbf{k}^{\oplus J}\right)^{*}
\end{array}
$$

Remark: $\left(x_{i}\right)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I}$ is summable iff $x_{i}=f \delta_{i}$ for a (unique) s.l. $f: \mathbf{k}^{I} \rightarrow \mathbf{k}(\Gamma, \mathcal{F})$. Notice $\delta_{i} \in \mathbf{k}^{I}$ corresponds to the i-th-coefficient-selecting functional $\delta_{i} \in \operatorname{Vect}\left(\mathbf{k}^{\oplus I}, \mathbf{k}\right)$.

Reasonble Cats of strong vector spaces (i)

$\iota:$ Vect $^{\mathrm{op}} \rightarrow \mathcal{C}$ fully faithful \mathbf{k}-additive functor. For it to be a category of strong vector spaces we would like that:

- $\mathcal{C}(\iota \mathbf{k},-)$ is faithful
- $\{$ summable I-families in $\mathcal{C}(\iota \mathbf{k}, X)\} \sim \mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)$
- $\left(x_{i}\right)_{i \in I} \in \mathcal{C}(\iota \mathbf{k}, X)^{I}$ should be summable iff $x_{i}=f \cdot \iota\left(\delta_{i}\right)$ for some $f \in \mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)$ in which case $\sum_{i \in I} x_{i} \cdot k_{i}=\mathcal{C}(\iota \mathbf{k}, f) \cdot\left(k_{i}\right)_{i \in I}$.

$$
\mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right) \xrightarrow{\mathcal{C}\left(\iota\left(\delta_{i}\right), X\right)_{i \in I}} \mathcal{C}(\iota \mathbf{k}, X)^{I}
$$

- we want the above map to be one-to-one
- each $\bar{f}: \mathcal{C}(\iota \mathbf{k}, X) \rightarrow \mathcal{C}(\iota \mathbf{k}, Y)$ has the form $\mathcal{C}(\iota \mathbf{k}, f)$ iff it preserves summability and sums.

Reasonble Cat.s of strong vector spaces (ii)

Definition

A fully faitfhul and locally small k-additive extension $\iota: \operatorname{Vect}^{\mathrm{Op}} \rightarrow \mathcal{C}$ is a reasonable cat. of strong vector spaces if
A1 ι is dense
A2 $\iota \mathbf{k}$ is a separator
A3 $\mathcal{C}\left(\iota\left(\delta_{i}\right), X\right)_{i \in I}: \mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right) \rightarrow \mathcal{C}(\iota(\mathbf{k}), X)^{I}$ is one-to-one for every set I.

Example: $B \Sigma \mathrm{Vect}$ is a reasonable cat. of strong vector spaces.
Remark: $(A 2)$ is redundant.
Remark: $(A 1)$ implies that \mathcal{C} is equivalent to a full subcategory (extending the subcategory of representables) of the category [Vect, Vect] $\mathbf{k}_{\mathbf{k}}$ of k-additive functors F : Vect \rightarrow Vect and natural transformations.

Reasonble Cat.s of strong vector spaces (ii)

$$
\mathcal{C} \xrightarrow{\mathcal{C}(\iota,-)}[\text { Vect }, \text { Vect }]_{\mathbf{k}} \xrightarrow{U_{*}} \operatorname{Psh}\left(\text { Vect }^{\mathrm{op}}\right)
$$

Reasonble Cat.s of strong vector spaces (ii)

Wlog

- $\mathcal{C} \subseteq[\text { Vect, Vect }]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V=\operatorname{Vect}(V,-)$

Reasonble Cat.s of strong vector spaces (ii)

Wlog

- $\mathcal{C} \subseteq[\text { Vect, Vect }]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V=\operatorname{Vect}(V,-)$
- $\mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)=\operatorname{Nat}\left(\operatorname{Vect}\left(\mathbf{k}^{\oplus I},-\right), X\right) \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{I}, X\right)$

Reasonble Cat.s of strong vector spaces (ii)

Wlog

- $\mathcal{C} \subseteq[\text { Vect, Vect }]_{k}$
- ι is the Yoneda embedding, $\iota V=\operatorname{Vect}(V,-)$
- $\mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)=\operatorname{Nat}\left(\operatorname{Vect}\left(\mathbf{k}^{\oplus I},-\right), X\right) \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{I}, X\right)$
- $\mathcal{C}(\iota \mathbf{k}, X)^{I}=\operatorname{Nat}(\operatorname{Vect}(\mathbf{k},-), X)^{I} \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{\oplus I}, X\right)$

Reasonble Cat.s of strong vector spaces (ii)

Wlog

- $\mathcal{C} \subseteq[\text { Vect, Vect }]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V=\operatorname{Vect}(V,-)$
- $\mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)=\operatorname{Nat}\left(\operatorname{Vect}\left(\mathbf{k}^{\oplus I},-\right), X\right) \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{I}, X\right)$
- $\mathcal{C}(\iota \mathbf{k}, X)^{I}=\operatorname{Nat}(\operatorname{Vect}(\mathbf{k},-), X)^{I} \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{\oplus I}, X\right)$
- $\mathcal{C}\left(\iota\left(\delta_{i}\right), X\right)_{i \in I}: \mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right) \rightarrow \mathcal{C}(\iota(\mathbf{k}), X)^{I}$ "is" actually $\operatorname{Nat}(-, X)$ applied to $\operatorname{Vect}(\mathbf{k},-)^{\oplus I} \hookrightarrow \operatorname{Vect}(\mathbf{k},-)^{I}$

Reasonble Cat.s of strong vector spaces (ii)

Wlog

- $\mathcal{C} \subseteq[\text { Vect, Vect }]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V=\operatorname{Vect}(V,-)$
- $\mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right)=\operatorname{Nat}\left(\operatorname{Vect}\left(\mathbf{k}^{\oplus I},-\right), X\right) \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{I}, X\right)$
- $\mathcal{C}(\iota \mathbf{k}, X)^{I}=\operatorname{Nat}(\operatorname{Vect}(\mathbf{k},-), X)^{I} \cong \operatorname{Nat}\left(\operatorname{Vect}(\mathbf{k},-)^{\oplus I}, X\right)$
- $\mathcal{C}\left(\iota\left(\delta_{i}\right), X\right)_{i \in I}: \mathcal{C}\left(\iota\left(\mathbf{k}^{\oplus I}\right), X\right) \rightarrow \mathcal{C}(\iota(\mathbf{k}), X)^{I}$ "is" actually $\operatorname{Nat}(-, X)$ applied to $\operatorname{Vect}(\mathbf{k},-)^{\oplus I} \hookrightarrow \operatorname{Vect}(\mathbf{k},-)^{I}$
- A3 thus says $\operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k},-)^{I}}{\operatorname{Vect}(\mathbf{k},-)^{\oplus I}}, X\right)=0$.

The category of all strong vector spaces

Theorem 2

There is a universal r.c.s.v. $\iota:$ Vect $^{\mathrm{op}} \rightarrow \Sigma$ Vect, i.e. with the property that for every r.c.s.v. $\iota^{\prime}:$ Vect $^{\mathrm{op}} \rightarrow \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta: \mathcal{C} \rightarrow \Sigma$ Vect s.t. $\iota \cong \eta \circ \iota^{\prime}$

The category of all strong vector spaces

Theorem 2

There is a universal r.c.s.v. $\iota:$ Vect $^{\mathrm{op}} \rightarrow \Sigma$ Vect, i.e. with the property that for every r.c.s.v. $\iota^{\prime}:$ Vect $^{\mathrm{op}} \rightarrow \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta: \mathcal{C} \rightarrow \Sigma$ Vect s.t. $\iota \cong \eta \circ \iota^{\prime}$

Moreover up to equivalence Σ Vect is

$$
\left\{X \in[\text { Vect, Vect }]_{\mathbf{k}}: \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k},-)^{\lambda}}{\operatorname{Vect}(\mathbf{k},-)^{\oplus \lambda}}, X\right)=0\right\}
$$

The category of all strong vector spaces

Theorem 2

There is a universal r.c.s.v. $\iota:$ Vect $^{\mathrm{op}} \rightarrow \Sigma$ Vect, i.e. with the property that for every r.c.s.v. $\iota^{\prime}:$ Vect $^{\mathrm{op}} \rightarrow \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta: \mathcal{C} \rightarrow \Sigma$ Vect s.t. $\iota \cong \eta \circ \iota^{\prime}$

Moreover up to equivalence Σ Vect is

$$
\left\{X \in \operatorname{Ind}\left(\operatorname{Vect}^{\mathrm{op}}\right): \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k},-)^{\lambda}}{\operatorname{Vect}(\mathbf{k},-)^{\oplus \lambda}}, X\right)=0\right\} .
$$

$X \in \operatorname{Ind}\left(\right.$ Vect $\left.^{\text {op }}\right)$ iff its category of elements is finally small.

The category of all strong vector spaces

Theorem 2

There is a universal r.c.s.v. $\iota:$ Vect $^{\mathrm{op}} \rightarrow \Sigma$ Vect, i.e. with the property that for every r.c.s.v. $\iota^{\prime}:$ Vect $^{\mathrm{op}} \rightarrow \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta: \mathcal{C} \rightarrow \Sigma$ Vect s.t. $\iota \cong \eta \circ \iota^{\prime}$

Moreover up to equivalence Σ Vect is

$$
\left\{X \in \operatorname{Ind}\left(\operatorname{Vect}^{\mathrm{op}}\right): \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k},-)^{\lambda}}{\operatorname{Vect}(\mathbf{k},-)^{\oplus \lambda}}, X\right)=0\right\} .
$$

In particular Σ Vect is reflective in $\operatorname{Ind}\left(\right.$ Vect $\left.^{\text {op }}\right)$ and hence small-bicomplete.

Arities for strong vector spaces

Definition

Say that $X \in[\text { Vect, } \mathrm{Vect}]_{\mathbf{k}}$ is λ-ary if it is a left Kan extension of a \mathbf{k}-additive functor defined on the category Vect $_{\lambda}$ of vector spaces of dimension $<\lambda$.

Remark: X is small if and only if it is λ-ary for some λ.

Lemma 3

$X \in \Sigma$ Vect $\subseteq[\text { Vect, Vect }]_{\mathbf{k}}$ is λ-ary iff whenever $\left(x_{i}\right)_{i \in I} \in(X \mathbf{k})^{I}$ is summable one has $\left|\left\{i \in I: x_{i} \neq 0\right\}\right|<\lambda$.
\rightarrow (by a simple pigeonhole-argument) every $X \in \Sigma$ Vect is $|X \mathbf{k}|^{++}$-ary.

About the reflection (i)

The following are equivalent for $X \leq Y \in \Sigma$ Vect

- the inclusion $X \leq Y$ reflects summability and sums of summable families (it is a "closed Σ-embedding")
- the inclusion $X \leq Y$ is right orthogonal to the natural inclusion $a_{\lambda}: \operatorname{Vect}(\mathbf{k},-)^{\oplus \lambda} \leq \operatorname{Vect}(\mathbf{k},-)^{\lambda}$ for every cardinal λ.
- $X \leq Y$ is a kernel in Σ Vect.

For $\mathcal{M}={ }^{\perp}\left(\right.$ Epi $\left.\cup\left\{a_{\lambda}: \lambda \in \operatorname{Card}\right\}\right),\left(\mathcal{M}^{\perp}, \mathcal{M}\right)$ is an orthogonal factorization system on $\operatorname{Ind}\left(\operatorname{Vect}^{\mathrm{op}}\right)$ and the \mathcal{M}-factor of $f: X \rightarrow Y$ can be computed as $\mathcal{S}^{\infty}(f):=\operatorname{ker}\left(Y \rightarrow \mathcal{R}^{\infty}(\operatorname{Coker} f)\right)$ where \mathcal{R}^{∞} is the postcomposition of the reflector with the inclusion $\mathcal{R}^{\infty}: \operatorname{Ind}\left(\right.$ Vect $\left.^{\mathrm{op}}\right) \rightarrow \Sigma$ Vect $\hookrightarrow \operatorname{Ind}\left(\right.$ Vect $\left.^{\mathrm{op}}\right)$.

About the reflection (ii)

If (\mathcal{R}, σ) is the obvious approximate reflector

$$
\sigma_{X}: X \rightarrow \mathcal{R}(X):=\operatorname{Coker}\left(\left\{g: \text { Coker } a_{\lambda} \rightarrow X\right\}_{\lambda \in \operatorname{Card}}\right)
$$

the corresponding approximate \mathcal{S} (restricted to Σ Vect) performs the operation of sending an arrow $f: X \rightarrow Y$ to a subobject of Y whose points are all infinite sums of summable families in the image of X. This in particular motivates the question: what is the minimum ordinal α such that $\mathcal{R}^{\alpha} X=\mathcal{R}^{\infty} X$. It is easy to see that if X is λ-ary then $\mathcal{R}^{\lambda}=\mathcal{R}^{\infty}$.

Theorem 4

If X is \aleph_{1}-ary then $\mathcal{R}^{\infty} X=\mathcal{R} X$.

Lemma 5

If $\operatorname{dim} V=\aleph_{0}, H<V^{*}$ has the form $\operatorname{Span}\left\{\delta_{b}^{B}: b \in B\right\}$ for a basis B of V if and only if $\operatorname{dim} H=\aleph_{0}$ and H is separative (i.e. $\bigcap_{\xi \in H} \operatorname{ker} \xi=0$).

Monoidal closed structure

$\operatorname{Ind}\left(\right.$ Vect $\left.^{\text {op }}\right)$ is abelian and has a natural monoidal closed-structure induced by the one on Vect ${ }^{\text {op }}$.

$$
\begin{aligned}
(X \hat{\otimes} Y)(V) & \cong \int^{H_{0}} \int^{H_{1}} X\left(H_{0}\right) \otimes Y\left(H_{1}\right) \otimes \operatorname{Vect}\left(H_{0} \otimes H_{1}, V\right) \\
\operatorname{Hom}(X, Y)(V) & \cong \int_{H_{0}} \int^{H_{1}} \operatorname{Vect}\left(X H_{0}, Y H_{1} \otimes \operatorname{Vect}\left(H_{1}, H_{0} \otimes V\right)\right)
\end{aligned}
$$

They both restrict to Σ Vect (no reflection needed for $-\hat{\otimes}-!$).
The two operations also restrict to $B \Sigma$ Vect with fairly explicit descriptions.

Topology

A linearly topologized vector space is a topological vector space (V, τ) whose topology has a local basis at 0 consisting of subspaces. It can be identified with the pair (V, \mathcal{F}) where \mathcal{F} is the filter of open subspaces. The topology is separated if and only if $\bigcap \mathcal{F}=0$.

Theorem 6 (Lefschetz)

The assignement $L V=\left(V^{*}\right.$, weak *-topolgy), $L(f)=f^{*}$ defines a full faithful functor $L: \mathrm{Vect}^{\mathrm{op}} \rightarrow T$ Vect $_{s}$ and its essential image consists of the linearly compact spaces.

Topology

A linearly topologized vector space is a topological vector space (V, τ) whose topology has a local basis at 0 consisting of subspaces. It can be identified with the pair (V, \mathcal{F}) where \mathcal{F} is the filter of open subspaces. The topology is separated if and only if $\bigcap \mathcal{F}=0$.

Theorem 6 (Lefschetz)

The assignement $L V=\left(V^{*}\right.$, weak *-topolgy), $L(f)=f^{*}$ defines a full faithful functor $L:$ Vect $^{\mathrm{op}} \rightarrow T$ Vect $_{s}$ and its essential image consists of the linearly compact spaces.

The functor $T \operatorname{Vect}_{s}(L,-): T \operatorname{Vect}_{s} \rightarrow[\text { Vect, Vect }]_{\mathbf{k}}$ factors through the inclusion $\operatorname{Ind}\left(\right.$ Vect $\left.^{\mathrm{op}}\right) \subseteq[\text { Vect, Vect }]_{\mathbf{k}}$ and the left adjoint of the factor is the left Kan extension of L along the Yoneda embedding
$\mathbb{Y}: \operatorname{Vect}^{\mathrm{op}} \rightarrow \operatorname{Ind}\left(\right.$ Vect $\left.^{\mathrm{op}}\right)$. The associated monad is idempotent and induces an equivalence between the "separated K-spaces" and a reflective proper subcategory of Σ Vect $\subseteq \operatorname{Ind}\left(\right.$ Vect $\left.^{\text {op }}\right)$.

Some questions left

- give an example of separated K-space which is not of the form $\mathbf{k}(\Gamma, \mathcal{F})$
- characterize those X which are in $B \Sigma V e c t$
- can we describe the strong linear Kähler differential of the Hahn field $\mathrm{k}\left(\left(x^{\mathbb{R}}\right)\right)$?
- Σ Vect is the free part of a torsion theory, is the torsion part $\{X: \forall Y \in \Sigma$ Vect, $\operatorname{Nat}(X, Y)=0\}$ interesting?

Thank you:)

References

㞒 Joris van der Hoeven.
Operators on generalized power series.
Illinois Journal of Mathematics, 45(4):1161-1190, 2001.
R Pietro Freni.
On Vector Spaces with Formal Infinite Sums. preprint, https://arxiv.org/abs/2303.08000

