What should Strong Vector Spaces be?

Pietro Freni

University of Leeds

ItaCa Fest, 24th May 2023

P.Freni (University of Leeds)

Strong Vector Spaces

24/05/2023 1/16

 \mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

•
$$\mathbf{k}(\Gamma, \mathcal{F}) := \{ x \in \mathbf{k}^{\Gamma} : \operatorname{supp} x \in \mathcal{F} \}.$$

Image: Image:

▶ **4 3** ►

 \mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

•
$$\mathbf{k}(\Gamma, \mathcal{F}) := \{x \in \mathbf{k}^{\Gamma} : \operatorname{supp} x \in \mathcal{F}\}.$$

 $\mathbf{k}(\Gamma, \{\text{finite subsets of } \Gamma\}) \cong \mathbf{k}^{\oplus \Gamma}$
 $\mathbf{k}(\Gamma, \mathcal{P}(\Gamma)) = \mathbf{k}^{\Gamma}$

Image: Image:

▶ ∢ ∃ ▶

 \mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

•
$$\mathbf{k}(\Gamma, \mathcal{F}) := \{x \in \mathbf{k}^{\Gamma} : \operatorname{supp} x \in \mathcal{F}\}.$$

 $\mathbf{k}(\Gamma, \{\text{finite subsets of } \Gamma\}) \cong \mathbf{k}^{\oplus \Gamma}$
 $\mathbf{k}(\Gamma, \mathcal{P}(\Gamma)) = \mathbf{k}^{\Gamma}$
 $\Gamma \hookrightarrow \mathbf{k}(\Gamma, \mathcal{F}), \text{ identify } \gamma \text{ with } \delta_{\gamma}(\gamma') = \begin{cases} 1 & \text{if } \gamma = \gamma' \\ 0 & \text{otherwise} \end{cases}$

P.Freni (University of Leeds)

Image: Image:

- ∢ ∃ ▶

 \mathbf{k} field, Γ set, $\mathcal{F} \subseteq \mathcal{P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

·).

- ∢ ∃ ▶

 ${f k}$ field, Γ set, ${\cal F}\subseteq {\cal P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

•
$$\mathbf{k}(\Gamma, \mathcal{F}) := \{x \in \mathbf{k}^{I} : \operatorname{supp} x \in \mathcal{F}\}.$$

• $(x_{i})_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})$ is summable iff
 $\forall \gamma \in \Gamma | \{i \in I : \gamma \in \operatorname{supp} x_{i}\} | < \aleph_{0}$
 $\bigcup \{\operatorname{supp} x_{i} : i \in I\} \in \mathcal{F}.$
in which case $(\sum_{i \in I} x_{i})(\gamma) = \sum_{i \in I} x_{i}(\gamma).$
• $f : \mathbf{k}(\Gamma, \mathcal{F}) \to \mathbf{k}(\Delta, \mathcal{G})$ linear, is strongly linear iff
 $\forall (x_{i})_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I}$ summable $\to \begin{cases} (fx_{i})_{i \in I} \in \mathbf{k}(\Delta, \mathcal{G})^{I} \text{ summable} \\ \sum_{i \in I} fx_{i} = f \sum_{i \in I} x_{i} \end{cases}$

P.Freni (University of Leeds)

Image: Image:

 ${f k}$ field, Γ set, ${\cal F}\subseteq {\cal P}(\Gamma)$ ideal containing the ideal of finite subsets.

Definition

•
$$\mathbf{k}(\Gamma, \mathcal{F}) := \{x \in \mathbf{k}^{I} : \operatorname{supp} x \in \mathcal{F}\}.$$

• $(x_{i})_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F}) \text{ is summable iff}$
 $\forall \gamma \in \Gamma | \{i \in I : \gamma \in \operatorname{supp} x_{i}\} | < \aleph_{0}$
 $\bigcup \{\operatorname{supp} x_{i} : i \in I\} \in \mathcal{F}.$
in which case $(\sum_{i \in I} x_{i})(\gamma) = \sum_{i \in I} x_{i}(\gamma).$
• $f : \mathbf{k}(\Gamma, \mathcal{F}) \to \mathbf{k}(\Delta, \mathcal{G})$ linear, is strongly linear iff
 $\forall (x_{i})_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^{I}$ summable $\to \begin{cases} (fx_{i})_{i \in I} \in \mathbf{k}(\Delta, \mathcal{G})^{I} \text{ summable} \\ \sum_{i \in I} fx_{i} = f \sum_{i \in I} x_{i} \end{cases}$

 $B\Sigma \text{Vect}$ is the category whose objects are the $\mathbf{k}(\Gamma, \mathcal{F})$ s and whose arrows are strong linear maps between them.

P.Freni (University of Leeds)

24/05/2023 2/16

Examples - why do we care

If < is a total order on Γ and $\mathcal{F} \subseteq WO(\Gamma, <) = \{S \subseteq \Gamma : S \text{ is well ordered}\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

 $v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \to \Gamma$ $v(x) = \min \operatorname{supp} x.$

イロト イヨト イヨト イヨト

Examples - why do we care

If < is a total order on Γ and $\mathcal{F} \subseteq WO(\Gamma, <) = \{S \subseteq \Gamma : S \text{ is well ordered}\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

 $v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \to \Gamma$ $v(x) = \min \operatorname{supp} x.$

Fact: $\mathbf{k}(\Gamma, WO(\Gamma))$ is isomorphic to the \mathcal{H} -injective hull of any $(V, v : V^{\neq 0} \to \Gamma)$ with 1-dimensional ribs, where \mathcal{H} is the class of immediate extensions of valued vector spaces.

Examples - why do we care

If < is a total order on Γ and $\mathcal{F} \subseteq WO(\Gamma, <) = \{S \subseteq \Gamma : S \text{ is well ordered}\}$ then $\mathbf{k}(\Gamma, \mathcal{F})$ has a valuation

 $v: \mathbf{k}(\Gamma, \mathcal{F})^{\neq 0} \to \Gamma \qquad v(x) = \min \operatorname{supp} x.$

Fact: $\mathbf{k}(\Gamma, WO(\Gamma))$ is isomorphic to the \mathcal{H} -injective hull of any $(V, v : V^{\neq 0} \to \Gamma)$ with 1-dimensional ribs, where \mathcal{H} is the class of immediate extensions of valued vector spaces.

If $(\Gamma, <, \cdot) \in oAb$, then on $\mathbf{k}(\Gamma, WO(\Gamma))$ there is a unique product extending the product of Γ along $\gamma \mapsto \tilde{\gamma} := \delta_{\gamma,-}$ which is strongly linear in both arguments.

Example 1

• if
$$\Gamma = x^{\mathbb{Z}}$$
, then $\mathbf{k}(\Gamma, WO(\Gamma)) = \mathbf{k}(\!(x)\!)$.

• if $\Gamma = x^{\mathbb{Q}}$ and \mathcal{F} consists of the well ordered subsets generating a fin.gen. subgroup then $\mathbf{k}(\Gamma, \mathcal{F})$ is the field of Puiseux series.

(日) (四) (日) (日) (日)

Fixing an ugly definition

P.Freni (University of Leeds)

イロト イヨト イヨト

Fixing an ugly definition

 $Ob(B\operatorname{Vect}) = \{\mathbf{k}^{\oplus I} : I \in \mathbf{Set}\}, \ B\operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}) = \operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}).$

Fixing an ugly definition

$$Ob(B\text{Vect}) = \{\mathbf{k}^{\oplus I} : I \in \mathbf{Set}\}, \ B\text{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}) = \text{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J})$$

Proposition 1

The assignment below defines a k-additive functor BVect^{op} $\rightarrow B\Sigma$ Vect which is fully faithful.

$$\begin{split} \mathbf{k}^{\oplus I} & \mathbf{k}(I,\mathcal{P}(I)) = \mathbf{k}^I \cong (\mathbf{k}^{\oplus I})^* \\ \downarrow^f & \mapsto & f^* \uparrow \\ \mathbf{k}^{\oplus J} & \mathbf{k}(J,\mathcal{P}(J)) = \mathbf{k}^J \cong (\mathbf{k}^{\oplus J})^* \end{split}$$

P.Freni (University of Leeds)

$$Ob(B\operatorname{Vect}) = {\mathbf{k}^{\oplus I} : I \in \operatorname{\mathbf{Set}}}, \ B\operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}) = \operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}).$$

Proposition 1

The assignment below defines a **k**-additive functor $B\text{Vect}^{\text{op}} \rightarrow B\Sigma\text{Vect}$ which is fully faithful and dense.

$$\begin{aligned} \mathbf{k}^{\oplus I} & \mathbf{k}(I, \mathcal{P}(I)) = \mathbf{k}^I \cong (\mathbf{k}^{\oplus I})^* \\ \downarrow^f & \mapsto & f^* \uparrow \\ \mathbf{k}^{\oplus J} & \mathbf{k}(J, \mathcal{P}(J)) = \mathbf{k}^J \cong (\mathbf{k}^{\oplus J})^* \end{aligned}$$

Remark: $(x_i)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^I$ is summable iff $x_i = f\delta_i$ for a (unique) s.l. $f : \mathbf{k}^I \to \mathbf{k}(\Gamma, \mathcal{F})$.

$$Ob(B\operatorname{Vect}) = \{\mathbf{k}^{\oplus I} : I \in \mathbf{Set}\}, \ B\operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}) = \operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k}^{\oplus J}).$$

Proposition 1

The assignment below defines a **k**-additive functor $B\text{Vect}^{\text{op}} \rightarrow B\Sigma\text{Vect}$ which is fully faithful and dense.

$$\begin{split} \mathbf{k}^{\oplus I} & \mathbf{k}(I,\mathcal{P}(I)) = \mathbf{k}^I \cong (\mathbf{k}^{\oplus I})^* \\ \downarrow^f & \mapsto & f^* \uparrow \\ \mathbf{k}^{\oplus J} & \mathbf{k}(J,\mathcal{P}(J)) = \mathbf{k}^J \cong (\mathbf{k}^{\oplus J})^* \end{split}$$

Remark: $(x_i)_{i \in I} \in \mathbf{k}(\Gamma, \mathcal{F})^I$ is summable iff $x_i = f\delta_i$ for a (unique) s.l. $f : \mathbf{k}^I \to \mathbf{k}(\Gamma, \mathcal{F})$. Notice $\delta_i \in \mathbf{k}^I$ corresponds to the *i*-th-coefficient-selecting functional $\delta_i \in \operatorname{Vect}(\mathbf{k}^{\oplus I}, \mathbf{k})$.

 $\iota: \operatorname{Vect}^{\operatorname{op}} \to \mathcal{C}$ fully faithful k-additive functor. For it to be a category of strong vector spaces we would like that:

- $\mathcal{C}(\iota \mathbf{k},-)$ is faithful
- {summable *I*-families in $\mathcal{C}(\iota \mathbf{k}, X)$ } ~ $\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X)$
 - $(x_i)_{i \in I} \in \mathcal{C}(\iota \mathbf{k}, X)^I$ should be summable iff $x_i = f \cdot \iota(\delta_i)$ for some $f \in \mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X)$ in which case $\sum_{i \in I} x_i \cdot k_i = \mathcal{C}(\iota \mathbf{k}, f) \cdot (k_i)_{i \in I}$.

$$\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) \xrightarrow{\mathcal{C}(\iota(\delta_i), X)_{i \in I}} \mathcal{C}(\iota\mathbf{k}, X)^I$$

• we want the above map to be one-to-one

• each $\overline{f} : \mathcal{C}(\iota \mathbf{k}, X) \to \mathcal{C}(\iota \mathbf{k}, Y)$ has the form $\mathcal{C}(\iota \mathbf{k}, f)$ iff it preserves summability and sums.

Definition

A fully faitfhul and locally small k-additive extension $\iota : Vect^{op} \to C$ is a reasonable cat. of strong vector spaces if

- A1 ι is dense
- A2 $\iota \mathbf{k}$ is a separator
- A3 $\mathcal{C}(\iota(\delta_i), X)_{i \in I} : \mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) \to \mathcal{C}(\iota(\mathbf{k}), X)^I$ is one-to-one for every set I.

Example: $B\Sigma$ Vect is a reasonable cat. of strong vector spaces.

Remark: (A2) is redundant.

Remark: (A1) implies that C is equivalent to a full subcategory (extending the subcategory of representables) of the category $[Vect, Vect]_k$ of k-additive functors $F : Vect \rightarrow Vect$ and natural transformations.

$$\mathcal{C} \xrightarrow{\mathcal{C}(\iota,-)} [\operatorname{Vect}, \operatorname{Vect}]_{\mathbf{k}} \xrightarrow{U_*} \operatorname{Psh}(\operatorname{Vect}^{\operatorname{op}})$$

Image: A mathematical states and a mathem

- $\mathcal{C} \subseteq [\text{Vect}, \text{Vect}]_k$
- ι is the Yoneda embedding, $\iota V = \operatorname{Vect}(V, -)$

- $\mathcal{C} \subseteq [\text{Vect}, \text{Vect}]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V = \operatorname{Vect}(V,-)$
- $\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}^{\oplus I}, -), X) \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{I}, X)$

- $\mathcal{C} \subseteq [\text{Vect}, \text{Vect}]_k$
- ι is the Yoneda embedding, $\iota V = \operatorname{Vect}(V,-)$

•
$$\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}^{\oplus I}, -), X) \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{I}, X)$$

•
$$\mathcal{C}(\iota \mathbf{k}, X)^I = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -), X)^I \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{\oplus I}, X)$$

- $\mathcal{C} \subseteq [\text{Vect}, \text{Vect}]_{\mathbf{k}}$
- ι is the Yoneda embedding, $\iota V = \operatorname{Vect}(V,-)$

•
$$\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}^{\oplus I}, -), X) \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{I}, X)$$

- $\mathcal{C}(\iota \mathbf{k}, X)^I = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -), X)^I \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{\oplus I}, X)$
- $\mathcal{C}(\iota(\delta_i), X)_{i \in I} : \mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) \to \mathcal{C}(\iota(\mathbf{k}), X)^I$ "is" actually $\operatorname{Nat}(-, X)$ applied to $\operatorname{Vect}(\mathbf{k}, -)^{\oplus I} \hookrightarrow \operatorname{Vect}(\mathbf{k}, -)^I$

•
$$\mathcal{C} \subseteq [\text{Vect}, \text{Vect}]_{\mathbf{k}}$$

• ι is the Yoneda embedding, $\iota V = \operatorname{Vect}(V,-)$

•
$$\mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}^{\oplus I}, -), X) \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{I}, X)$$

- $\mathcal{C}(\iota \mathbf{k}, X)^I = \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -), X)^I \cong \operatorname{Nat}(\operatorname{Vect}(\mathbf{k}, -)^{\oplus I}, X)$
- $\mathcal{C}(\iota(\delta_i), X)_{i \in I} : \mathcal{C}(\iota(\mathbf{k}^{\oplus I}), X) \to \mathcal{C}(\iota(\mathbf{k}), X)^I$ "is" actually $\operatorname{Nat}(-, X)$ applied to $\operatorname{Vect}(\mathbf{k}, -)^{\oplus I} \hookrightarrow \operatorname{Vect}(\mathbf{k}, -)^I$

• A3 thus says
$$\operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k},-)^{I}}{\operatorname{Vect}(\mathbf{k},-)^{\oplus I}},X\right) = 0.$$

There is a universal r.c.s.v. ι : $\operatorname{Vect}^{\operatorname{op}} \to \Sigma \operatorname{Vect}$, i.e. with the property that for every r.c.s.v. ι' : $\operatorname{Vect}^{\operatorname{op}} \to \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta : \mathcal{C} \to \Sigma \operatorname{Vect} s.t. \ \iota \cong \eta \circ \iota'$

There is a universal r.c.s.v. ι : $\operatorname{Vect}^{\operatorname{op}} \to \Sigma \operatorname{Vect}$, i.e. with the property that for every r.c.s.v. ι' : $\operatorname{Vect}^{\operatorname{op}} \to \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta : \mathcal{C} \to \Sigma \operatorname{Vect} s.t. \ \iota \cong \eta \circ \iota'$

Moreover up to equivalence $\Sigma Vect$ is

$$\left\{X \in [\operatorname{Vect}, \operatorname{Vect}]_{\mathbf{k}} : \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k}, -)^{\lambda}}{\operatorname{Vect}(\mathbf{k}, -)^{\oplus \lambda}}, X\right) = 0\right\}.$$

There is a universal r.c.s.v. ι : $\operatorname{Vect}^{\operatorname{op}} \to \Sigma \operatorname{Vect}$, i.e. with the property that for every r.c.s.v. ι' : $\operatorname{Vect}^{\operatorname{op}} \to \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta : \mathcal{C} \to \Sigma \operatorname{Vect}$ s.t. $\iota \cong \eta \circ \iota'$

Moreover up to equivalence $\Sigma Vect$ is

$$\left\{X \in \operatorname{Ind}(\operatorname{Vect}^{\operatorname{op}}) : \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k}, -)^{\lambda}}{\operatorname{Vect}(\mathbf{k}, -)^{\oplus \lambda}}, X\right) = 0\right\}.$$

 $X \in \text{Ind}(\text{Vect}^{\text{op}})$ iff its category of elements is finally small.

There is a universal r.c.s.v. ι : $\operatorname{Vect}^{\operatorname{op}} \to \Sigma \operatorname{Vect}$, i.e. with the property that for every r.c.s.v. ι' : $\operatorname{Vect}^{\operatorname{op}} \to \mathcal{C}$ there is a (unique up to a unique isomorphism) $\eta : \mathcal{C} \to \Sigma \operatorname{Vect}$ s.t. $\iota \cong \eta \circ \iota'$

Moreover up to equivalence $\Sigma Vect$ is

$$\left\{X \in \operatorname{Ind}(\operatorname{Vect}^{\operatorname{op}}) : \forall \lambda \in \operatorname{Card}, \operatorname{Nat}\left(\frac{\operatorname{Vect}(\mathbf{k}, -)^{\lambda}}{\operatorname{Vect}(\mathbf{k}, -)^{\oplus \lambda}}, X\right) = 0\right\}.$$

In particular $\Sigma Vect$ is reflective in $Ind(Vect^{op})$ and hence small-bicomplete.

Image: Image:

Definition

Say that $X \in [\text{Vect}, \text{Vect}]_{\mathbf{k}}$ is λ -ary if it is a left Kan extension of a **k**-additive functor defined on the category Vect_{λ} of vector spaces of dimension $< \lambda$.

Remark: X is small if and only if it is λ -ary for some λ .

Lemma 3

 $X \in \Sigma \text{Vect} \subseteq [\text{Vect}, \text{Vect}]_{\mathbf{k}}$ is λ -ary iff whenever $(x_i)_{i \in I} \in (X\mathbf{k})^I$ is summable one has $|\{i \in I : x_i \neq 0\}| < \lambda$.

 \rightarrow (by a simple pigeonhole-argument) every $X \in \Sigma \text{Vect}$ is $|X\mathbf{k}|^{++}$ -ary.

The following are equivalent for $X \leq Y \in \Sigma \text{Vect}$

- the inclusion X ≤ Y reflects summability and sums of summable families (it is a "closed Σ-embedding")
- the inclusion $X \leq Y$ is right orthogonal to the natural inclusion $a_{\lambda} : \operatorname{Vect}(\mathbf{k}, -)^{\oplus \lambda} \leq \operatorname{Vect}(\mathbf{k}, -)^{\lambda}$ for every cardinal λ .

•
$$X \leq Y$$
 is a kernel in Σ Vect.

For $\mathcal{M} = {}^{\perp}(\mathsf{Epi} \cup \{a_{\lambda} : \lambda \in \mathbf{Card}\}), (\mathcal{M}^{\perp}, \mathcal{M})$ is an orthogonal factorization system on $\mathrm{Ind}(\mathrm{Vect}^{\mathrm{op}})$ and the \mathcal{M} -factor of $f : X \to Y$ can be computed as $\mathcal{S}^{\infty}(f) := \ker(Y \to \mathcal{R}^{\infty}(\mathrm{Coker} f))$ where \mathcal{R}^{∞} is the postcomposition of the reflector with the inclusion $\mathcal{R}^{\infty} : \mathrm{Ind}(\mathrm{Vect}^{\mathrm{op}}) \to \Sigma \mathrm{Vect} \hookrightarrow \mathrm{Ind}(\mathrm{Vect}^{\mathrm{op}}).$

イロト イヨト イヨト

About the reflection (ii)

If (\mathcal{R},σ) is the obvious approximate reflector

 $\sigma_X: X \to \mathcal{R}(X) := \operatorname{Coker}(\{g: \operatorname{Coker} a_\lambda \to X\}_{\lambda \in \mathbf{Card}})$

the corresponding approximate S (restricted to ΣVect) performs the operation of sending an arrow $f: X \to Y$ to a subobject of Y whose points are all infinite sums of summable families in the image of X. This in particular motivates the question: what is the minimum ordinal α such that $\mathcal{R}^{\alpha}X = \mathcal{R}^{\infty}X$. It is easy to see that if X is λ -ary then $\mathcal{R}^{\lambda} = \mathcal{R}^{\infty}$.

Theorem 4

If X is \aleph_1 -ary then $\mathcal{R}^{\infty}X = \mathcal{R}X$.

Lemma 5

If dim $V = \aleph_0$, $H < V^*$ has the form $Span\{\delta_b^B : b \in B\}$ for a basis B of V if and only if dim $H = \aleph_0$ and H is separative (i.e. $\bigcap_{\xi \in H} \ker \xi = 0$).

P.Freni (University of Leeds)

11/16

 $\mathrm{Ind}(\mathrm{Vect}^{\mathrm{op}})$ is abelian and has a natural monoidal closed-structure induced by the one on $\mathrm{Vect}^{\mathrm{op}}.$

$$(X \hat{\otimes} Y)(V) \cong \int^{H_0} \int^{H_1} X(H_0) \otimes Y(H_1) \otimes \operatorname{Vect}(H_0 \otimes H_1, V)$$

$$\operatorname{Hom}(X, Y)(V) \cong \int_{H_0} \int^{H_1} \operatorname{Vect}(X H_0, Y H_1 \otimes \operatorname{Vect}(H_1, H_0 \otimes V))$$

They both restrict to ΣVect (no reflection needed for $-\hat{\otimes}-!$).

The two operations also restrict to $B\Sigma \text{Vect}$ with fairly explicit descriptions.

Topology

A linearly topologized vector space is a topological vector space (V, τ) whose topology has a local basis at 0 consisting of subspaces. It can be identified with the pair (V, \mathcal{F}) where \mathcal{F} is the filter of open subspaces. The topology is separated if and only if $\bigcap \mathcal{F} = 0$.

Theorem 6 (Lefschetz)

The assignment $LV = (V^*, \text{weak }*\text{-topolgy}), L(f) = f^*$ defines a full faithful functor $L : \text{Vect}^{\text{op}} \to T\text{Vect}_s$ and its essential image consists of the linearly compact spaces.

Topology

A linearly topologized vector space is a topological vector space (V, τ) whose topology has a local basis at 0 consisting of subspaces. It can be identified with the pair (V, \mathcal{F}) where \mathcal{F} is the filter of open subspaces. The topology is separated if and only if $\bigcap \mathcal{F} = 0$.

Theorem 6 (Lefschetz)

The assignment $LV = (V^*, \text{weak }*\text{-topolgy}), L(f) = f^*$ defines a full faithful functor $L : \text{Vect}^{\text{op}} \to T\text{Vect}_s$ and its essential image consists of the linearly compact spaces.

The functor $T\operatorname{Vect}_s(L, -): T\operatorname{Vect}_s \to [\operatorname{Vect}, \operatorname{Vect}]_k$ factors through the inclusion $\operatorname{Ind}(\operatorname{Vect}^{\operatorname{op}}) \subseteq [\operatorname{Vect}, \operatorname{Vect}]_k$ and the left adjoint of the factor is the left Kan extension of L along the Yoneda embedding $\mathbb{Y}: \operatorname{Vect}^{\operatorname{op}} \to \operatorname{Ind}(\operatorname{Vect}^{\operatorname{op}})$. The associated monad is idempotent and induces an equivalence between the "separated K-spaces" and a reflective proper subcategory of $\Sigma\operatorname{Vect} \subseteq \operatorname{Ind}(\operatorname{Vect}^{\operatorname{op}})$.

イロト イヨト イヨト イヨト

- give an example of separated K-space which is not of the form ${f k}(\Gamma,{\cal F})$
- characterize those X which are in $B\Sigma Vect$
- can we describe the strong linear Kähler differential of the Hahn field $\mathbf{k}(\!(x^{\mathbb{R}})\!)$?
- Σ Vect is the free part of a torsion theory, is the torsion part $\{X : \forall Y \in \Sigma$ Vect, $Nat(X, Y) = 0\}$ interesting?

Thank you :)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Joris van der Hoeven.

Operators on generalized power series. Illinois Journal of Mathematics, 45(4):1161 – 1190, 2001.

Pietro Freni.

On Vector Spaces with Formal Infinite Sums. *preprint*, https://arxiv.org/abs/2303.08000