Higher dimensional semantics
of propositional dependent type theories

Matteo Spadetto, University of Udine

matteo.spadetto.42@gmail.com

In the study of the semantics of dependent type theory, we typically encounter two
distinct, but related, approaches: syntactical and categorical. The syntactical approach di-
rectly mirrors the structure of the syntax of the theory, via a choice function that defines how
judgements in the conclusions of inference rules are interpreted based on the interpretations
assigned to the premises (see e.g. [Hof97] and [Str91]). On the other hand, the categorical
approach adds structure and property to the model: structure and property that allows
to recover a choice function analogous to that provided in the syntactical approach. For
instance, assuming that the notion of equality of a given theory is extensional, the inference
rules of the dependent sum type constructor correspond to the requirement that the family
of display maps in a model is closed under composition up to isomorphism: this categorical
property encodes into the model the syntax of dependent sums (see e.g. [HS98| and [Jac99]).

However, in case we drop the extensionality of the identity types, such a simple and clear
characterisation of the type constructors is harder to find, and hence a (1-dimensional)
categorical presentation of the semantics of such a theory is not completely satisfactory.
Given this challenge of encoding intensional theories into 1-dimensional categorical terms,
a challenge that persists even for propositional theories — i.e. wvery intensional theories,
also known in the literature as aziomatic, weak, objective theories — in this talk we adopt
Garner’s perspective [Gar(Q9] to study the semantics of propositional theories from a higher
categorical point of view, specifically a 2-categorical one.

A propositional theory [AGS17, [CD13|, vdB18| vdB23, BW19, Boc22] [0S24] is a depen-
dent type theory whose computation rules consist of propositional equalities, rather than
the definitional equalities that normally characterise the reductions and the expansions in
formal systems like Martin-Lof type theory or the calculus of constructions. Starting from
the syntax of a propositional theory, we prove that its type constructors can be encoded into
natural 2-dimensional category theoretic data. We use these data to show that the semantics
of propositional theories of dependent types admits a presentation via 2-categorical models
called display map 2-categories. In other words, we show that display map 2-categories with
such data are sufficient to reconstruct the semantic counterpart of propositional theories
as in the syntactical approach, particularly inducing appropriate display map categories —
i.e ordinary models [Tay99| [Jac99]. It turns out that the 2-categorical requirements identi-
fied by Garner for interpreting an intensional theory, in the propositional case are relaxed.
Therefore, we obtain a notion of semantics for propositional theories that generalises Gar-
ner’s one for intensional ones. We compare the class of models according to this notion of
semantics with the class of those derived from the usual notion of semantics.
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