Presheaves as Kripke frames

Matteo De Berardinis

Kripke frames (directed graphs) are the main ingredient of the most popular semantics for modal logics [3]. Together with *p*-morphisms (functions f satisfying $f(v^{\uparrow}) = f(v)^{\uparrow}$, for each vertex v), they form the category **KFr**. **KFr**_{lf}, the class of *locally finite* Kripke frames (for each vertex v, the set of endpoints of directed paths starting from v is finite), has some nice categorical properties. It is cocomplete and complete, being the Ind-completion (see [4]) of **KFr**_f, and the forgetful functor **KFr**_{lf} \longrightarrow **Set** is co-monadic. All these properties are due to semantic reasons, namely the closure of **KFr**_{lf} under the standard truth-preserving operations of taking generated subframes, p-morphic images and disjoint unions. As a consequence, any subclass $C \subseteq \mathbf{KFr}_{lf}$ closed under the aforementioned operations enjoys the same categorical properties (see [2] for a complete overview).

It is natural to ask, assuming that all the Kripke frames in C are transitive (so that C uniquely corresponds to some normal modal logic containing **K4** and with the finite model property), whether C is a regular category or not. It turns out that C is regular if and only if C_f has the co-amalgamation property. In the case of preorders, with techniques similar to those used in [5], it is possible to exclude regularity for every but 49 cases.

Barr exactness can be characterized, at least in the cases of preorders and of strict preorders, by describing products in C by means of the *universal model construction* (well known in the modal logic literature [1]). Moreover, exactness is sufficient for C to be a Grothendieck topos (Giraud's characterization).

Vice versa, there is a canonical way to see presheaves as Kripke frames. Given a small category \mathcal{D} , and a presheaf F in $\mathbf{Set}^{\mathcal{D}^{\mathrm{op}}}$, we can consider the slice category \mathcal{D}/F . The objects of \mathcal{D}/F are natural transformations $x: D \longrightarrow F$, with D in \mathcal{D} (identifying D in \mathcal{D} with the representable presheaf $\operatorname{Hom}_{\mathcal{D}}(_, D)$); morphisms $y \longrightarrow x$ in \mathcal{D}/F are given by arrows $a: E \longrightarrow D$ in \mathcal{D} such that $y = x \circ a$. We can then consider the preorder $K_{\mathcal{D}}(F)$, with underlying set \mathcal{D}/F , obtained by setting $x \leq y$ iff $y = x \circ a$ for some $a: E \longrightarrow D$ in \mathcal{D} . A natural transformation $\alpha: F \longrightarrow F'$ in $\operatorname{Set}^{\mathcal{D}^{\mathrm{op}}}$ induces a functor between the corresponding slices, by composition. As a function $K_{\mathcal{D}}(F) \longrightarrow K_{\mathcal{D}}(F')$, it is a p-morphism. Putting everything together, $K_{\mathcal{D}}$ defines a faithful functor from $\operatorname{Set}^{\mathcal{D}^{\mathrm{op}}}$ to KFr . Its image, contained in the class of preorders, is closed under generated subframes and disjoint unions. We will characterize those \mathcal{D} for which $K_{\mathcal{D}}$ is an equivalence with a class \mathcal{C} of locally finite Kripke frames having all the closure properties we want.

References

- Fabio Bellissima, An effective representation for finitely generated free interior algebras, Algebra Universalis, 20(3):302-317, 1985.
- [2] Matteo De Berardinis and Silvio Ghilardi, Profiniteness, monadicity and universal models in modal logic, Annals of Pure and Applied Logic, Volume 175, Issue 7, 2024.
- [3] Alexander Chagrov and Michael Zakharyaschev, *Modal logic*, volume 35 of Oxford Logic Guides, The Clarendon Press, Oxford University Press, New York, 1997, Oxford Science Publications.
- [4] Peter T. Johnstone, Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1982.
- [5] Larisa L. Maksimova, Interpolation theorems in modal logics and amalgamable varieties of topological Boolean algebras, Algebra and Logic, 18:348-370, 1979.