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Relational doctrines [3, 4] provide a functorial description, in the spirit of Lawvere’s
hyperdoctrines [5, 6], of a core fragment of the calculus of relations [1, 10, 11]. In this
context, one can define equivalence relations and their quotients as well as a universal
construction, dubbed extensional quotient completion, which freely adds (extensional)
quotients to any relational doctrine. This construction generalizes both the elementary
quotient completion of existential elementary doctrines [8, 9] and the exact completion
of categories with weak finite limits [2].
An important result about the exact completion of a category with weak finite limits

states that the category of algebras for a monad on an exact category C is the exact
completion of its Kleisli category, provided that C satisfies a form of the Axiom of
Choice [12]. In this talk, we will show how this result extends to the extensional quotient
completion of relational doctrines. To achieve this, we will first characterize doctrines
obtained by the extensional quotient completion as those haveing quotients and enough
projectives, extending similar results about the elementary quotient completion [7] and
the exact completion [2]. Then, we will describe the Eilenberg-Moore construction for
monads on relational doctrines, obtaining the following theorem.

Theorem 1 Let R : (C × C )op → Pos be an extensional relational doctrine with quo-
tients. Then, the following are equivalent

1. Every R-surjective arrow in C splits.

2. For every monad T = ⟨T, η, µ⟩ on R, the Eilenberg-Moore doctrine RT is balanced,
extensional, has quotients and free algebras are RT-projective.

∗This is joint work with Fabio Pasquali
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