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It has long been known [Ehrig et al., 1974] that automata can be interpreted within every monoidal
category (K,⊗, I); the cornerstone results in this direction are essentially three:

S1. if T : K → K is a commutative monad, Mealy and Moore machines in the (monoidal) Kleisli
category KT are ‘non-deterministic’ machines for a notion of fuzziness fixed by T ;

S2. if K is closed, one can characterize Mealy and Moore machines coalgebraically [Jacobs, 2006],
and in particular provide a slick proof of the cocompleteness of the categories Mly(A,B) and
Mre(A,B) that they form [Adámek and Trnková, 1990];

S3. if (and essentially only if ) K is Cartesian monoidal, Mly(A,B) is the hom-category of a bicate-
gory Mly [Guitart, 1974, Katis et al., 1997], and Mre(A,B) the hom-category of a semibicate-
gory (a bicategory without identity 1-cells, cf. [Boccali et al., 2023]) Mre.

Starting from the mantra that a monoidal category is nothing but a single-object bicategory, we
fix a bicategory B and study ‘abstract machines’ in B, i.e. diagrams of 2-cells of the form
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where i, e, o are 1-cells respectively dubbed the ‘input’ 1-cell, the ‘state’ 1-cell and the ‘output’ 1-cell.
We then proceed to find parallels for S1, S2, S3 in this more general setting:

B1. let T be a monad on Set and (V,⊙,⊥) a quantale. The study of bicategorical machines in the
bicategory of (T, V )-relations of [Hofmann et al., 2014] accounts for notions of non-determinism
that are modeled on topologies, approach structures, metric and ultrametric structures, Kura-
towski closure spaces, and all the likes of structures studied by monoidal topology;

B2. in perfect parallel with the monoidal case, the behaviour of a Mealy/Moore machine can be
characterized through a universal property [Goguen, 1972]; a terminal coalgebra for monoidal
machines, a weighted limit of sorts for bicategorical machines. In the case of Moore machines
the description is prettier, in terms of a right extension. This clarifies long-forgotten remarks by
Bainbridge [Bainbridge, 1975] on abstract machines as Kan arrows;
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B3. passing from single- to multi-object bicategories, we gain an additional degree of freedom indexing
hom-categories over generic objects; in particular, we gain a rich compositional structure that
was not present in the monoidal case, a way of composing machines that is neither sequential
nor parallel and that we dub intertwining.

This is a joint work with A. Laretto, G. Boccali, S. Luneia, see arXiv:2303.03865.
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