The homotopy posets of a category

Amar Hadzihasanovic* Quantinuum & Tallinn University of Technology

We introduce invariants which, to a category C, associate functors

 $\pi_0(C/_-): C \to \mathbf{Pos}_{\bullet}, \qquad \pi_1(C/_-): C \to \mathbf{Pos}_{\bullet}$

with values in the category of pointed posets. We call these the *zeroth and first homotopy* posets of a category. These generalise the π_0 and π_1 of a groupoid in the following sense.

Theorem 0.1 — Let G be a groupoid and x an object in G. Then

- 1. $\pi_0(G/x)$ is a discrete poset, isomorphic to the set $\pi_0(G)$ of connected components of G, pointed with the connected component of x,
- 2. $\pi_1(G/x)$ is a discrete poset, isomorphic to the underlying pointed set of the group $\pi_1(G, x) = \operatorname{Hom}_G(x, x).$

Their main property is that they "vanish" precisely on terminal objects in C.

Theorem 0.2 — Let C be a category and x an object in C. The following are equivalent: (a) $\pi_0(C/x) = \{[x]\}$ and $\pi_1(C/x) = \{[x]\},$

(b) x is a terminal object in C.

More precisely, π_0 vanishes on weak terminal objects and π_1 on subterminal objects.

In this sense, any element of $\pi_0(C/x)$ and $\pi_1(C/x)$ besides the basepoint may be seen as an "obstruction to x being a terminal object". This gives a structured answer to the question: how far is an object from being terminal? Via the identification of isomorphisms $f: y \to x$ with terminal objects in the slice category C/x, this in turn provides a structured answer to the question: how far is a morphism from being an isomorphism?

In my talk, after giving the definition of the invariants, I will explore some of their properties more in depth: in what ways they are functorial, and under what conditions the homotopy posets are endowed with extra properties or structures, such as the existence of joins or monoidal structures.

^{*}Joint work with Caterina Puca, Fabrizio Genovese, and Bob Coecke (arXiv:2307.14461).